A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV col...A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization(CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.展开更多
Variational methods have become an important kind of methods in signal and image restoration—a typical inverse problem. One important minimization model consists of the squared ?_2 data fidelity(corresponding to Gaus...Variational methods have become an important kind of methods in signal and image restoration—a typical inverse problem. One important minimization model consists of the squared ?_2 data fidelity(corresponding to Gaussian noise) and a regularization term constructed by a potential function composed of first order difference operators. It is well known that total variation(TV) regularization, although achieved great successes,suffers from a contrast reduction effect. Using a typical signal, we show that, actually all convex regularizers and most nonconvex regularizers have this effect. With this motivation, we present a general truncated regularization framework. The potential function is a truncation of existing nonsmooth potential functions and thus flat on(τ, +∞) for some positive τ. Some analysis in 1 D theoretically demonstrate the good contrast-preserving ability of the framework. We also give optimization algorithms with convergence verification in 2 D, where global minimizers of each subproblem(either convex or nonconvex) are calculated. Experiments numerically show the advantages of the framework.展开更多
基金supported by the China Scholarship CouncilPostgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX17_0776)the Natural Science Foundation of NUPT(No.NY214039)
文摘A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization(CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.
基金supported by National Natural Science Foundation of China (Grant Nos. 11301289 and 11531013)
文摘Variational methods have become an important kind of methods in signal and image restoration—a typical inverse problem. One important minimization model consists of the squared ?_2 data fidelity(corresponding to Gaussian noise) and a regularization term constructed by a potential function composed of first order difference operators. It is well known that total variation(TV) regularization, although achieved great successes,suffers from a contrast reduction effect. Using a typical signal, we show that, actually all convex regularizers and most nonconvex regularizers have this effect. With this motivation, we present a general truncated regularization framework. The potential function is a truncation of existing nonsmooth potential functions and thus flat on(τ, +∞) for some positive τ. Some analysis in 1 D theoretically demonstrate the good contrast-preserving ability of the framework. We also give optimization algorithms with convergence verification in 2 D, where global minimizers of each subproblem(either convex or nonconvex) are calculated. Experiments numerically show the advantages of the framework.