A fuzzy ARTMAP classifier is adopted for a classification experiment of CBERS-2 imagery. The fundamental theory and processing about the algorithm are first introduced, followed with a land-use classification experime...A fuzzy ARTMAP classifier is adopted for a classification experiment of CBERS-2 imagery. The fundamental theory and processing about the algorithm are first introduced, followed with a land-use classification experiment in Shihezi County on CBERS-2 high resolution imagery. Three classifiers are compared: maximum likelihood classifier (MLC), error back propagation (BP) classifier, and fuzzy ARTMAP classifier. The comparison shows comparably better results for the fuzzy ARTMAP classifier, with overall classification accuracy of 9.9% and 4.6% higher than that of MLC and BP. The results also prove that the fuzzy ARTMAP classifier has better discernment in identifying bare soil on CBERS-2 imagery.展开更多
This paper presents a new kind of back propagation neural network (BPNN) based on rough sets,called rough back propagation neural network (RBPNN).The architecture and training method of RBPNN are presented and the sur...This paper presents a new kind of back propagation neural network (BPNN) based on rough sets,called rough back propagation neural network (RBPNN).The architecture and training method of RBPNN are presented and the survey and analysis of RBPNN for the classification of remote sensing multi_spectral image is discussed.The successful application of RBPNN to a land cover classification illustrates the simple computation and high accuracy of the new neural network and the flexibility and practicality of this new approach.展开更多
How high-level emotional representation of art paintings can be inferred from percep tual level features suited for the particular classes (dynamic vs. static classification)is presented. The key points are feature se...How high-level emotional representation of art paintings can be inferred from percep tual level features suited for the particular classes (dynamic vs. static classification)is presented. The key points are feature selection and classification. According to the strong relationship between notable lines of image and human sensations, a novel feature vector WLDLV (Weighted Line Direction-Length Vector) is proposed, which includes both orientation and length information of lines in an image. Classification is performed by SVM (Support Vector Machine) and images can be classified into dynamic and static. Experimental results demonstrate the effectiveness and superiority of the algorithm.展开更多
This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional...This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional algorithm: that is, the classification accura- cy is increased. This is achieved by incorporating covariance matrices at the level of individual classes rather than assuming a global one. Empirical results from a fuzzy classification of an Edinburgh suburban land cover confirmed the improved performance of the new algorithm for fuzzy c-means clustering, in particular when fuzziness is also accommodated in the assumed reference data.展开更多
基金Supported by the National Social Development Research Program of China (No.2004DE100625).
文摘A fuzzy ARTMAP classifier is adopted for a classification experiment of CBERS-2 imagery. The fundamental theory and processing about the algorithm are first introduced, followed with a land-use classification experiment in Shihezi County on CBERS-2 high resolution imagery. Three classifiers are compared: maximum likelihood classifier (MLC), error back propagation (BP) classifier, and fuzzy ARTMAP classifier. The comparison shows comparably better results for the fuzzy ARTMAP classifier, with overall classification accuracy of 9.9% and 4.6% higher than that of MLC and BP. The results also prove that the fuzzy ARTMAP classifier has better discernment in identifying bare soil on CBERS-2 imagery.
文摘This paper presents a new kind of back propagation neural network (BPNN) based on rough sets,called rough back propagation neural network (RBPNN).The architecture and training method of RBPNN are presented and the survey and analysis of RBPNN for the classification of remote sensing multi_spectral image is discussed.The successful application of RBPNN to a land cover classification illustrates the simple computation and high accuracy of the new neural network and the flexibility and practicality of this new approach.
文摘How high-level emotional representation of art paintings can be inferred from percep tual level features suited for the particular classes (dynamic vs. static classification)is presented. The key points are feature selection and classification. According to the strong relationship between notable lines of image and human sensations, a novel feature vector WLDLV (Weighted Line Direction-Length Vector) is proposed, which includes both orientation and length information of lines in an image. Classification is performed by SVM (Support Vector Machine) and images can be classified into dynamic and static. Experimental results demonstrate the effectiveness and superiority of the algorithm.
文摘This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional algorithm: that is, the classification accura- cy is increased. This is achieved by incorporating covariance matrices at the level of individual classes rather than assuming a global one. Empirical results from a fuzzy classification of an Edinburgh suburban land cover confirmed the improved performance of the new algorithm for fuzzy c-means clustering, in particular when fuzziness is also accommodated in the assumed reference data.