We present a relation between the Mathieu equation and a particular elliptic curve. We find that the Floquet exponent of the Mathieu equation, for both q《1 and q》1, can be obtained from the integral of a differentia...We present a relation between the Mathieu equation and a particular elliptic curve. We find that the Floquet exponent of the Mathieu equation, for both q《1 and q》1, can be obtained from the integral of a differential one form along the two homology cycles of the elliptic curve. Certain higher order differential operators are needed to generate the WKB expansion. We make a few conjectures about the general structure of these differential operators.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10675061 adn 11175090
文摘We present a relation between the Mathieu equation and a particular elliptic curve. We find that the Floquet exponent of the Mathieu equation, for both q《1 and q》1, can be obtained from the integral of a differential one form along the two homology cycles of the elliptic curve. Certain higher order differential operators are needed to generate the WKB expansion. We make a few conjectures about the general structure of these differential operators.