The forms of f2(n,k) and g2(n,k) were shown in Essentials ofCombinalorial Mathematics written by Mao Jingzhong. This paper gives the formsof f1(n,k) and g1 (n,k), where 2.
With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed ...With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed for the calculation of a circular plate subjected to polynomial distributed loads, a concentrated load at the center, uniform radial forces and moments along the edge or their combinations. The support may be elastic. The buckling load was calculated. Under action of uniformly distributed load, central load or their compound load, solutions were compared with those obtained by other methods. Buckling beyond critical thrust was compared with that calculated by the power series method. The method presented in this paper has advantages of wide convergent range, high precision and short computing time. Moreover, the computing time is nearly independent of the complexity of the loads.展开更多
文摘The forms of f2(n,k) and g2(n,k) were shown in Essentials ofCombinalorial Mathematics written by Mao Jingzhong. This paper gives the formsof f1(n,k) and g1 (n,k), where 2.
文摘With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed for the calculation of a circular plate subjected to polynomial distributed loads, a concentrated load at the center, uniform radial forces and moments along the edge or their combinations. The support may be elastic. The buckling load was calculated. Under action of uniformly distributed load, central load or their compound load, solutions were compared with those obtained by other methods. Buckling beyond critical thrust was compared with that calculated by the power series method. The method presented in this paper has advantages of wide convergent range, high precision and short computing time. Moreover, the computing time is nearly independent of the complexity of the loads.