Mode matching method is used to analyze the scattering characteristics of thecircular-to-circular groove waveguide junction. Matching the electric fields and magnetic fields atthe boundary of the junction, and multipl...Mode matching method is used to analyze the scattering characteristics of thecircular-to-circular groove waveguide junction. Matching the electric fields and magnetic fields atthe boundary of the junction, and multiplying the mode functions of the circular waveguide andcircular groove waveguide on both sides of the boundary equation, the scattering matrix equation isobtained, the scattering coefficients can be obtained from the equation. Then the scatteringcharacteristics of the iris with circular window in circular groove waveguide are analyzed. At lastthe convergent problem is discussed; when choosing a suitable mode group, convergent numericalresults are obtained, and the frequency response of the iris' scattering coefficients is also given.展开更多
This paper discusses the calculation of plastic zone properties around circular tunnels to rock-masses that satisfy the Hoek–Brown failure criterion in non-hydrostatic condition,and reviews the calculation of plastic...This paper discusses the calculation of plastic zone properties around circular tunnels to rock-masses that satisfy the Hoek–Brown failure criterion in non-hydrostatic condition,and reviews the calculation of plastic zone and displacement,and the basis of the convergence–confinement method in hydrostatic condition.A two-dimensional numerical simulation model was developed to gain understanding of the plastic zone shape.Plastic zone radius in any angles around the tunnel is analyzed and measured,using different values of overburden(four states)and stress ratio(nine states).Plastic zone radius equations were obtained from fitting curve to data which are dependent on the values of stress ratio,angle and plastic zone radius in hydrostatic condition.Finally validation of this equation indicate that results predict the real plastic zone radius appropriately.展开更多
In the present work, an ideal Quadra-pole field has been realized by circular concave electrodes with a proper electrode angle The potential distribution in such an electrode system has been analyzed by assuming a sim...In the present work, an ideal Quadra-pole field has been realized by circular concave electrodes with a proper electrode angle The potential distribution in such an electrode system has been analyzed by assuming a simple boundary condition. The effect of the gap angle between the electrodes of the Quadra-pole lens on the optical properties has been studied such as the focal lengths, magnification and the chromatic aberration coefficient in the convergence and divergence planes.展开更多
The gas-solid flow characteristics in the riser of a high density CFB of square (0.27 m×0.27 m×10.4 m) or circu-lar (? 0.187m×10.4 m) cross section, using Geldart B particles (quartz sand), was investig...The gas-solid flow characteristics in the riser of a high density CFB of square (0.27 m×0.27 m×10.4 m) or circu-lar (? 0.187m×10.4 m) cross section, using Geldart B particles (quartz sand), was investigated experimentally. The influence of riser structure on the hydrodynamic behaviors of a high-density circulating fluidized bed was investigated. The solid circulation rate was up to 321 kg/(m2s) with the circular cross-section under the operating conditions of the main bed air velocity 12.1 m/s and loosen wind and back-feed wind flow 25.1 m3/h. Different operating conditions on realizing high density circulation was analyzed, while both solids circulation rate and particle holdup depended highly on operating conditions. The circulating gas-solid flow was accompanied by an evidently-dense character in the riser's bottom zone and became fully developed in the middle and upper zones.展开更多
Fabry-Perot Interferometer(FPI) has been used widely for wind measurements of the middle and upper atmosphere.To date, most of FPIs have been based on full-closed circular fringe, which needs 15–25 min to obtain a gr...Fabry-Perot Interferometer(FPI) has been used widely for wind measurements of the middle and upper atmosphere.To date, most of FPIs have been based on full-closed circular fringe, which needs 15–25 min to obtain a group of wind velocity(zonal and meridional). However, it is hard to improve the temporal resolution because full-closed circular fringe in several directions cannot be easily imaged onto the same Charge-Coupled Device(CCD) with enough airglow intensity. In this paper, a data processing method is proposed for non-full circular fringe of FPI, which can support CCD with enough area of observations in several directions simultaneously. The method is focused on the center determination of non-full fringe. It includes radial cross-section, peak coordinate determination, and center calculation. Based on the calculated center, the fringe is annular summed. Then its radius is determined subsequently using Gaussian fitting. Finally, the wind is retrieved from the fringe radius. For validation, fringes from two ground-based FPIs were used, which are deployed in Kelan(38.71°N, 111.58°E) and Xinglong(40.40°N, 117.59°E) in China. The results retrieved from non-full fringes of FPIs were compared with that from full-closed circular fringe. The averaged wind deviation between them demonstrates reasonable difference with 5.38 ms^-(1) for 892.0 nm airglow emission, 5.81 ms^-(1) for 630.0 nm emission, and 3.03 ms^-(1) for 557.7 nm emission. Besides, wind results of Xinglong FPI are compared roughly with measurements of meteor radar which is deployed in Ming Tombs of Beijing(40.3°N,116.2°E). Good agreement demonstrates that this method is robust enough for FPI wind retrieval of mesosphere and thermosphere.展开更多
In this paper, the spatial Hill lunar problem is investigated, and the existence of invariant tori of hyperbolic type in a neighborhood of its equilibrium is shown. Moreover,the author checks the non-degenerate condit...In this paper, the spatial Hill lunar problem is investigated, and the existence of invariant tori of hyperbolic type in a neighborhood of its equilibrium is shown. Moreover,the author checks the non-degenerate condition analytically and obtains two-dimensional elliptic invariant tori on its central manifold as well.展开更多
In this paper, based on the mean field dynamo theory, the influence of the electromagnetic boundary condition on the dynamo actions driven by the small scale turbulent flows in a cylindrical vessel is investigated by ...In this paper, based on the mean field dynamo theory, the influence of the electromagnetic boundary condition on the dynamo actions driven by the small scale turbulent flows in a cylindrical vessel is investigated by the integral equation approach. The numerical results show that the increase of the electrical conductivity or magnetic permeability of the walls of the cylindrical vessel can reduce the critical magnetic Reynolds number. Furthermore, the critical magnetic Reynolds number is more sensi- tive to the varying electrical conductivity of the end wall or magnetic permeability of the side wall. For the anisotropic dynamo which is the mean field model of the Karlsruhe experiment, when the relative electrical conductivity of the side wall or the rel- ative magnetic permeability of the end wall is less than some critical value, the m=l (m is the azimuthal wave number) mag- netic mode is the dominant mode, otherwise the m=0 mode predominates the excited magnetic field. Therefore, by changing the material of the walls of the cylindrical vessel, one can select the magnetic mode excited by the anisotropic dynamo.展开更多
文摘Mode matching method is used to analyze the scattering characteristics of thecircular-to-circular groove waveguide junction. Matching the electric fields and magnetic fields atthe boundary of the junction, and multiplying the mode functions of the circular waveguide andcircular groove waveguide on both sides of the boundary equation, the scattering matrix equation isobtained, the scattering coefficients can be obtained from the equation. Then the scatteringcharacteristics of the iris with circular window in circular groove waveguide are analyzed. At lastthe convergent problem is discussed; when choosing a suitable mode group, convergent numericalresults are obtained, and the frequency response of the iris' scattering coefficients is also given.
文摘This paper discusses the calculation of plastic zone properties around circular tunnels to rock-masses that satisfy the Hoek–Brown failure criterion in non-hydrostatic condition,and reviews the calculation of plastic zone and displacement,and the basis of the convergence–confinement method in hydrostatic condition.A two-dimensional numerical simulation model was developed to gain understanding of the plastic zone shape.Plastic zone radius in any angles around the tunnel is analyzed and measured,using different values of overburden(four states)and stress ratio(nine states).Plastic zone radius equations were obtained from fitting curve to data which are dependent on the values of stress ratio,angle and plastic zone radius in hydrostatic condition.Finally validation of this equation indicate that results predict the real plastic zone radius appropriately.
文摘In the present work, an ideal Quadra-pole field has been realized by circular concave electrodes with a proper electrode angle The potential distribution in such an electrode system has been analyzed by assuming a simple boundary condition. The effect of the gap angle between the electrodes of the Quadra-pole lens on the optical properties has been studied such as the focal lengths, magnification and the chromatic aberration coefficient in the convergence and divergence planes.
基金supports by the National Natural Science Foundation of China (51006106)the National High Technology Research and Development of China 863 Program (2006AA05A103)
文摘The gas-solid flow characteristics in the riser of a high density CFB of square (0.27 m×0.27 m×10.4 m) or circu-lar (? 0.187m×10.4 m) cross section, using Geldart B particles (quartz sand), was investigated experimentally. The influence of riser structure on the hydrodynamic behaviors of a high-density circulating fluidized bed was investigated. The solid circulation rate was up to 321 kg/(m2s) with the circular cross-section under the operating conditions of the main bed air velocity 12.1 m/s and loosen wind and back-feed wind flow 25.1 m3/h. Different operating conditions on realizing high density circulation was analyzed, while both solids circulation rate and particle holdup depended highly on operating conditions. The circulating gas-solid flow was accompanied by an evidently-dense character in the riser's bottom zone and became fully developed in the middle and upper zones.
基金supported by National Space Science Center (Xinglong FPI data)Institute of Geology and Geophysics (meteor radar data)Beijing Municipal Science and Technology Commission (Grant No. Z151100003615001)
文摘Fabry-Perot Interferometer(FPI) has been used widely for wind measurements of the middle and upper atmosphere.To date, most of FPIs have been based on full-closed circular fringe, which needs 15–25 min to obtain a group of wind velocity(zonal and meridional). However, it is hard to improve the temporal resolution because full-closed circular fringe in several directions cannot be easily imaged onto the same Charge-Coupled Device(CCD) with enough airglow intensity. In this paper, a data processing method is proposed for non-full circular fringe of FPI, which can support CCD with enough area of observations in several directions simultaneously. The method is focused on the center determination of non-full fringe. It includes radial cross-section, peak coordinate determination, and center calculation. Based on the calculated center, the fringe is annular summed. Then its radius is determined subsequently using Gaussian fitting. Finally, the wind is retrieved from the fringe radius. For validation, fringes from two ground-based FPIs were used, which are deployed in Kelan(38.71°N, 111.58°E) and Xinglong(40.40°N, 117.59°E) in China. The results retrieved from non-full fringes of FPIs were compared with that from full-closed circular fringe. The averaged wind deviation between them demonstrates reasonable difference with 5.38 ms^-(1) for 892.0 nm airglow emission, 5.81 ms^-(1) for 630.0 nm emission, and 3.03 ms^-(1) for 557.7 nm emission. Besides, wind results of Xinglong FPI are compared roughly with measurements of meteor radar which is deployed in Ming Tombs of Beijing(40.3°N,116.2°E). Good agreement demonstrates that this method is robust enough for FPI wind retrieval of mesosphere and thermosphere.
文摘In this paper, the spatial Hill lunar problem is investigated, and the existence of invariant tori of hyperbolic type in a neighborhood of its equilibrium is shown. Moreover,the author checks the non-degenerate condition analytically and obtains two-dimensional elliptic invariant tori on its central manifold as well.
基金supported by the National Natural Science Foundation of China(Grant No.11272187)
文摘In this paper, based on the mean field dynamo theory, the influence of the electromagnetic boundary condition on the dynamo actions driven by the small scale turbulent flows in a cylindrical vessel is investigated by the integral equation approach. The numerical results show that the increase of the electrical conductivity or magnetic permeability of the walls of the cylindrical vessel can reduce the critical magnetic Reynolds number. Furthermore, the critical magnetic Reynolds number is more sensi- tive to the varying electrical conductivity of the end wall or magnetic permeability of the side wall. For the anisotropic dynamo which is the mean field model of the Karlsruhe experiment, when the relative electrical conductivity of the side wall or the rel- ative magnetic permeability of the end wall is less than some critical value, the m=l (m is the azimuthal wave number) mag- netic mode is the dominant mode, otherwise the m=0 mode predominates the excited magnetic field. Therefore, by changing the material of the walls of the cylindrical vessel, one can select the magnetic mode excited by the anisotropic dynamo.