ABE-KONDOH-NAGANO,ABID,YANG-SHIH and LAUNDER-SHARMA low-Reynolds number turbulence models were applied to simulating unsteady turbulence flow around a square cylinder in different phases flow field and time-averaged u...ABE-KONDOH-NAGANO,ABID,YANG-SHIH and LAUNDER-SHARMA low-Reynolds number turbulence models were applied to simulating unsteady turbulence flow around a square cylinder in different phases flow field and time-averaged unsteady flow field.Meanwhile,drag and lift coefficients of the four different low-Reynolds number turbulence models were analyzed.The simulated results of YANG-SHIH model are close to the large eddy simulation results and experimental results,and they are significantly better than those of ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMR models.The modification of the generation of turbulence kinetic energy is the key factor to a successful simulation for YANG-SHIH model,while the correction of the turbulence near the wall has minor influence on the simulation results.For ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMA models satisfactory simulation results cannot be obtained due to lack of the modification of the generation of turbulence kinetic energy.With the joint force of wall function and the turbulence models with the adoption of corrected swirl stream,flow around a square cylinder can be fully simulated with less grids by the near-wall.展开更多
The lattice Boltzmann method (LBM) is employed to simulate the uniform flow past a circular cylinder. The performance of the two-dimensional LBM model on the prediction of force coefficients and vortex shedding freque...The lattice Boltzmann method (LBM) is employed to simulate the uniform flow past a circular cylinder. The performance of the two-dimensional LBM model on the prediction of force coefficients and vortex shedding frequency is investigated. The local grid refinement technique and second-order boundary condition for curved walls are applied in the calculations. It is found that the calculated vortex shedding frequency, drag coefficient and lift coefficient are consistent with experimental results at Reynolds nu...展开更多
Finite element(FEM)analysis was used to systematically evaluate the inhomogeneity of deformation in cylindrical samples with various sample-anvil friction coefficients,m.It was found that the level of friction strongl...Finite element(FEM)analysis was used to systematically evaluate the inhomogeneity of deformation in cylindrical samples with various sample-anvil friction coefficients,m.It was found that the level of friction strongly influences the deformation homogeneity,which increases significantly with the friction coefficient although the overall geometry of the samples almost remains the same when m >0.4.The position,at which the effective strain along the maximum radial direction in a compressed sample is equal to the equivalent strain of the sample,does not vary greatly with respect to both equivalent strain of the sample and m.Hardness measurements of compressed cylindrical 5056B Al alloy samples revealed a change of effective strain distribution similar to that revealed by FEM analysis.There exists a quantitative relationship between the hardness and the effective strain if no recrystallization or recovery occurs during the compression process.展开更多
The flow past a primary cylinder with one tandem control rod and one staggered control rod is simulated in this paper through solving the Navier-Stokes equations. Two examples are simulated to validate the model, and ...The flow past a primary cylinder with one tandem control rod and one staggered control rod is simulated in this paper through solving the Navier-Stokes equations. Two examples are simulated to validate the model, and the results matched well with those of previous researches. The Reynolds number based on the diameter of the primary cylinder is 500. The diameter ratio between the control rod and the primary cylinder (d/D) is 0.25. It was found that the effect of the combination of one upstream tandem control rod and one staggered control rod on the hydrodynamics of the primary cylinder is a linear superposition of the effect of a corresponding single control rod, and the effect of the upstream tandem control rod is dominant at larger spacing ratios such as G/D=2. For the combination of a downstream tandem control rod and a staggered control rod, the effect of the control rods is different from that of the corresponding single control rod in the region of 0.2〈G/D〈0.5 & 30°〈a〈120° and 0.9〈G/D〈1.4 & 30°〈a〈50°, where the additional effect is obvious. In this case, the effect of the downstream tandem control rod is dominant at small spacing ratios (such as G/D=0.1). At moderate spacing ratios such as G/D=0.4, the effects of the tandem control rod and the staggered control rod are comparable in both cases.展开更多
The analytical mathematical solutions of gas concentration and fractional gas loss for the diffusion of gas in a cylindrical coal sample were given with detailed mathematical derivations by assuming that the diffusion...The analytical mathematical solutions of gas concentration and fractional gas loss for the diffusion of gas in a cylindrical coal sample were given with detailed mathematical derivations by assuming that the diffusion of gas through the coal matrix is concentration gradient-driven and obeys the Fick’s Second Law of Diffusion.The analytical solutions were approximated in case of small values of time and the error analyses associated with the approximation were also undertaken.The results indicate that the square root relationship of gas release in the early stage of desorption,which is widely used to provide a simple and fast estimation of the lost gas,is the first term of the approximation,and care must be taken in using the square root relationship as a significant error might be introduced with increase in the lost time and decrease in effective diameter of a cylindrical coal sample.展开更多
This research investigates the possibility of convergent acoustic waves generation in the liquid by means of the sotmd waves reflection from the solid cylindrical surface, emerged in the pulsed electric discharge. The...This research investigates the possibility of convergent acoustic waves generation in the liquid by means of the sotmd waves reflection from the solid cylindrical surface, emerged in the pulsed electric discharge. The spectra of pulse discharge plasma emission in the water and in the air-water mixture were obtained. The temperature of cuprum and oxygen atoms electronic excitation levels and the temperature tendencies during the discharge current existence were calculated.展开更多
The research on structural vibration and sound radiation of underwater ring-ribbed cylindrical shell, which is coated with a kind of deadening and decoupling materials, becomes a focus in recent years. This paper anal...The research on structural vibration and sound radiation of underwater ring-ribbed cylindrical shell, which is coated with a kind of deadening and decoupling materials, becomes a focus in recent years. This paper analyzes the problem on two aspects: model experiment and numerical calculation. The model experiment is carried out including three cases firstly, in which the structural vibration response and radiating acoustic field are measured respectively, and the results gained in these three cases are analyzed to discuss the effect of reducing structural vibration and radiating noise of the deadening and decoupling materials. The coupling FEM/BEM and the SEA methods are both used in numerical calculation, i.e. the arithmetic of the coupling FEM/BEM method is adopted to calculate the low frequency characteristics and the SEA method is adopted to calculate the medium-high frequencies characteristics of the model. By comparing experimental results with numerical calculation results, it is proved that the algorithm adopted in this paper is reasonable.展开更多
This study described a new species of free-living nematode discovered in the intertidal mudflat of Ximen Island,East China Sea.The new species,designated Parodontophora longiamphidata sp.nov.,was characterized by a cy...This study described a new species of free-living nematode discovered in the intertidal mudflat of Ximen Island,East China Sea.The new species,designated Parodontophora longiamphidata sp.nov.,was characterized by a cylindrical body with tapering extremeties;cuticle smooth without somatic setae;four short cephalic setae;cylindrical buccal cavity with six clawlike teeth at the top of stoma;pharynx cylindrical with widened base;amphidial fovea crook-shaped with elongated scalariform branch extending past level of base of pharynx and ventral gland;ventral gland cell long-oval shaped located posterior to pharyngo-intestinal junction;excretory pore at level of middle of buccal cavity;tail conico-cylindrical with enlarged tip;three caudal gland cells,male spicules arched with cephalic proximal end and tapered distal end;gubernaculum with dorso-caudal apophysis;female with two opposed outstretched ovaries;and vulva at slightly post-midpoint of body length.This new species was close to P.wuleidaowanensis Zhang,2005 and P.polita Gerlach,1955 in terms of long amphidial fovea branch.The newly found species was easily distinguishable from the two documented;its amphidial fovea branch(255–290 μm versus 72–106 and 125–150 μm) was obviously longer.Key to the Parodontophora species with a longer amphidial fovea branch was given.展开更多
The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwi...The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwich shells.Based on the third-order shear deformation shell theory,the governing equations of the system are derived by using the Hamilton’s principle.To check the validity of the present analysis,the results are compared with those in previous studies for the special cases.Results manifest that the natural frequency of the fluid-conveying FGM sandwich shells increases with the rise of the core-to-thickness ratio and power-law exponent,while decreases with the rise of fluid density,radius-to-thickness ratio and length-to-radius ratio.The fluid-conveying FGM sandwich shells lose stability when the non-dimensional flow velocity falls in 2.1-2.5,which should be avoided in engineering application.展开更多
A numerical study has been carried out to investigate the effect of aspect ratio on heat transfer by natural convection of nanofluid taking Cu nano particles and the water as based fluid. The flow is laminar, steady s...A numerical study has been carried out to investigate the effect of aspect ratio on heat transfer by natural convection of nanofluid taking Cu nano particles and the water as based fluid. The flow is laminar, steady state, axisymmetric two-dimensional in a vertical cylindrical channel filled with porous media. Heat is generated uniformly along the center of the channel with its vertical surface remain with cooled constant wall temperature and insulated horizontal top and bottom surfaces. The governing equations which used are continuity, momentum and energy equations using Darcy law and Boussinesq's approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 program. The parameters affected on the system are Rayleigh number ranging within (10≤ Ra ≤ 103), aspect ratio (1 ≤ As 〈 5) and the volume fraction (0 ≤0 〈 0.2). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that as ~ increase from 0.01 to 0.2 the value of the mean Nusselt number increase 50.4% for Ra = 1,000.展开更多
Flow around two rotating side-by-side circular cylinders of equal diameter D is numerically studied at the Rey- nolds number 40〈 Re 〈200 and various rotation rate 8i. The incoming flow is assumed to be two-dimension...Flow around two rotating side-by-side circular cylinders of equal diameter D is numerically studied at the Rey- nolds number 40〈 Re 〈200 and various rotation rate 8i. The incoming flow is assumed to be two-dimensional laminar flow. The governing equations are the incompressible Navier-Stokes equations and solved by the finite volume method (FVM). The ratio of the center-to-center spacing to the cylinder diameter is T/D=2. The objective of the present work is to investigate the effect of rotational speed and Reynolds number on the stability of the flow. The simulation results are compared with the experimental data and a good agreement is achieved. The stability of the flow is analyzed by using the energy gradient theory, which produces the energy gradient function K to identify the region where the flow is the most prone to be destabilized and the degree of the destabilization. Numerical results reveal that K is the most significant at the separated shear layers of the cylinder pair. With Re in- creases, the length of the wake is shorter and the vortex shedding generally exhibits a symmetrical distribution for θi〈θcrit. It is also shown that the unsteady vortex shedding can be suppressed by rotating the cylinders in the counter-rotating mode.展开更多
Cylindrical and spherical (nonplanar) solitary waves (SWs) and double layers (DLs) in a multi-ion plasma system (containing inertial positively as well as negatively charged ions, non-inertial degenerate electrons, an...Cylindrical and spherical (nonplanar) solitary waves (SWs) and double layers (DLs) in a multi-ion plasma system (containing inertial positively as well as negatively charged ions, non-inertial degenerate electrons, and negatively charged static dust) are studied by employing the standard reductive perturbation method. The modified Gardner (MG) equation describing the nonlinear propagation of the dust ion-acoustic (DIA) waves is derived, and its nonplanar SWs and DLs solutions are numerically analyzed. The parametric regimes for the existence of SWs, which are associated with both positive and negative potential, and DLs which are associated with negative potential, are obtained. The basic features of nonplanar DIA SWs, and DLs, which are found to be different from planar ones, are also identified.展开更多
Hypersonic boundary layer transition induced by an isolated cylindrical roughness element is investigated using direct numerical simulation method based on a finite volume formulation.To simulate the transition proced...Hypersonic boundary layer transition induced by an isolated cylindrical roughness element is investigated using direct numerical simulation method based on a finite volume formulation.To simulate the transition procedure by resolving the generation and evolvement of small-scale coherent structures,and capture the shock wave at the same time,high-order minimum dispersion and controllable dissipation scheme is validated and then applied.The results are compared with the available measurements in the quiet wind tunnel,such as the dominated frequency and root mean square of pressure.The computational dominated frequency of 19.23 k Hz is very close to the experimental one,21 k Hz.Also,the disturbances of the roughness are mostly generated by the"jet"just before the roughness,and then they travel and develop downstream with the shear layer and vortex shedding.The transition is mainly dominated by the instabilities of both the horseshoe vortex and the shear layer.展开更多
Electron-acoustic shock waves (EASWs) in an unmagnetized four-component plasma (containing hot elec- trons and positrons following the q-nonextensiv.e distribution, cold mobile viscous electron fluid, and immobile ...Electron-acoustic shock waves (EASWs) in an unmagnetized four-component plasma (containing hot elec- trons and positrons following the q-nonextensiv.e distribution, cold mobile viscous electron fluid, and immobile positive ions) are studied in nonplanar (cylindrical and spherical) geometry. With the help of the reductive perturbation method, the modified Burgers equation is derived. Analytically, the effects of nonplanar geometry, nonextensivity, relative number density and temperature ratios, and cold electron kinematic viscosity on the basic properties (viz. amplitude, width, speed, etc.) of EASWs are discussed. It is exarmined that the EASWs in nonplanar geometry significantly differ from those in planar geometry. The results of this investigation can be helpful in understanding the nonlinear features of EASWs in various astrophysical plasmas.展开更多
基金Project(2006BAJ04B04)supported by the National Science and Technology Pillar Program in the Eleventh Five-year Plan PeriodProject(2006AA05Z229)supported by the National High Technology Research and Development Program of China+1 种基金Project supportedby the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education MinistryProject(06wk3023)supported by Hunan Science and Technology Office
文摘ABE-KONDOH-NAGANO,ABID,YANG-SHIH and LAUNDER-SHARMA low-Reynolds number turbulence models were applied to simulating unsteady turbulence flow around a square cylinder in different phases flow field and time-averaged unsteady flow field.Meanwhile,drag and lift coefficients of the four different low-Reynolds number turbulence models were analyzed.The simulated results of YANG-SHIH model are close to the large eddy simulation results and experimental results,and they are significantly better than those of ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMR models.The modification of the generation of turbulence kinetic energy is the key factor to a successful simulation for YANG-SHIH model,while the correction of the turbulence near the wall has minor influence on the simulation results.For ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMA models satisfactory simulation results cannot be obtained due to lack of the modification of the generation of turbulence kinetic energy.With the joint force of wall function and the turbulence models with the adoption of corrected swirl stream,flow around a square cylinder can be fully simulated with less grids by the near-wall.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060056036)
文摘The lattice Boltzmann method (LBM) is employed to simulate the uniform flow past a circular cylinder. The performance of the two-dimensional LBM model on the prediction of force coefficients and vortex shedding frequency is investigated. The local grid refinement technique and second-order boundary condition for curved walls are applied in the calculations. It is found that the calculated vortex shedding frequency, drag coefficient and lift coefficient are consistent with experimental results at Reynolds nu...
基金Project(2016JJ1016) supported by the Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProject(201301G0105337290) supported by the Program of Innovation and Entrepreneur Team Introduced by Guangdong Province,China
文摘Finite element(FEM)analysis was used to systematically evaluate the inhomogeneity of deformation in cylindrical samples with various sample-anvil friction coefficients,m.It was found that the level of friction strongly influences the deformation homogeneity,which increases significantly with the friction coefficient although the overall geometry of the samples almost remains the same when m >0.4.The position,at which the effective strain along the maximum radial direction in a compressed sample is equal to the equivalent strain of the sample,does not vary greatly with respect to both equivalent strain of the sample and m.Hardness measurements of compressed cylindrical 5056B Al alloy samples revealed a change of effective strain distribution similar to that revealed by FEM analysis.There exists a quantitative relationship between the hardness and the effective strain if no recrystallization or recovery occurs during the compression process.
基金the support from the National Natural Science Foundation of China(Nos.11372188,and 51490674)the National Basic Research Program of China(973 Program)(No.2015CB251203)
文摘The flow past a primary cylinder with one tandem control rod and one staggered control rod is simulated in this paper through solving the Navier-Stokes equations. Two examples are simulated to validate the model, and the results matched well with those of previous researches. The Reynolds number based on the diameter of the primary cylinder is 500. The diameter ratio between the control rod and the primary cylinder (d/D) is 0.25. It was found that the effect of the combination of one upstream tandem control rod and one staggered control rod on the hydrodynamics of the primary cylinder is a linear superposition of the effect of a corresponding single control rod, and the effect of the upstream tandem control rod is dominant at larger spacing ratios such as G/D=2. For the combination of a downstream tandem control rod and a staggered control rod, the effect of the control rods is different from that of the corresponding single control rod in the region of 0.2〈G/D〈0.5 & 30°〈a〈120° and 0.9〈G/D〈1.4 & 30°〈a〈50°, where the additional effect is obvious. In this case, the effect of the downstream tandem control rod is dominant at small spacing ratios (such as G/D=0.1). At moderate spacing ratios such as G/D=0.4, the effects of the tandem control rod and the staggered control rod are comparable in both cases.
基金provided by the Science and Technology Grant of Huainan City of China (No.2013A4001)the Key Research Grant of Shanxi Province of China (No.201303027-1)
文摘The analytical mathematical solutions of gas concentration and fractional gas loss for the diffusion of gas in a cylindrical coal sample were given with detailed mathematical derivations by assuming that the diffusion of gas through the coal matrix is concentration gradient-driven and obeys the Fick’s Second Law of Diffusion.The analytical solutions were approximated in case of small values of time and the error analyses associated with the approximation were also undertaken.The results indicate that the square root relationship of gas release in the early stage of desorption,which is widely used to provide a simple and fast estimation of the lost gas,is the first term of the approximation,and care must be taken in using the square root relationship as a significant error might be introduced with increase in the lost time and decrease in effective diameter of a cylindrical coal sample.
文摘This research investigates the possibility of convergent acoustic waves generation in the liquid by means of the sotmd waves reflection from the solid cylindrical surface, emerged in the pulsed electric discharge. The spectra of pulse discharge plasma emission in the water and in the air-water mixture were obtained. The temperature of cuprum and oxygen atoms electronic excitation levels and the temperature tendencies during the discharge current existence were calculated.
文摘The research on structural vibration and sound radiation of underwater ring-ribbed cylindrical shell, which is coated with a kind of deadening and decoupling materials, becomes a focus in recent years. This paper analyzes the problem on two aspects: model experiment and numerical calculation. The model experiment is carried out including three cases firstly, in which the structural vibration response and radiating acoustic field are measured respectively, and the results gained in these three cases are analyzed to discuss the effect of reducing structural vibration and radiating noise of the deadening and decoupling materials. The coupling FEM/BEM and the SEA methods are both used in numerical calculation, i.e. the arithmetic of the coupling FEM/BEM method is adopted to calculate the low frequency characteristics and the SEA method is adopted to calculate the medium-high frequencies characteristics of the model. By comparing experimental results with numerical calculation results, it is proved that the algorithm adopted in this paper is reasonable.
基金supported by the National Natural Science Foundation of China (No.41176107)
文摘This study described a new species of free-living nematode discovered in the intertidal mudflat of Ximen Island,East China Sea.The new species,designated Parodontophora longiamphidata sp.nov.,was characterized by a cylindrical body with tapering extremeties;cuticle smooth without somatic setae;four short cephalic setae;cylindrical buccal cavity with six clawlike teeth at the top of stoma;pharynx cylindrical with widened base;amphidial fovea crook-shaped with elongated scalariform branch extending past level of base of pharynx and ventral gland;ventral gland cell long-oval shaped located posterior to pharyngo-intestinal junction;excretory pore at level of middle of buccal cavity;tail conico-cylindrical with enlarged tip;three caudal gland cells,male spicules arched with cephalic proximal end and tapered distal end;gubernaculum with dorso-caudal apophysis;female with two opposed outstretched ovaries;and vulva at slightly post-midpoint of body length.This new species was close to P.wuleidaowanensis Zhang,2005 and P.polita Gerlach,1955 in terms of long amphidial fovea branch.The newly found species was easily distinguishable from the two documented;its amphidial fovea branch(255–290 μm versus 72–106 and 125–150 μm) was obviously longer.Key to the Parodontophora species with a longer amphidial fovea branch was given.
基金supported by the National Natural Science Foundation of China(Nos.11922205,12072201)the Fundamental Research Fund for the Central Universities(No.N2005019)。
文摘The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwich shells.Based on the third-order shear deformation shell theory,the governing equations of the system are derived by using the Hamilton’s principle.To check the validity of the present analysis,the results are compared with those in previous studies for the special cases.Results manifest that the natural frequency of the fluid-conveying FGM sandwich shells increases with the rise of the core-to-thickness ratio and power-law exponent,while decreases with the rise of fluid density,radius-to-thickness ratio and length-to-radius ratio.The fluid-conveying FGM sandwich shells lose stability when the non-dimensional flow velocity falls in 2.1-2.5,which should be avoided in engineering application.
文摘A numerical study has been carried out to investigate the effect of aspect ratio on heat transfer by natural convection of nanofluid taking Cu nano particles and the water as based fluid. The flow is laminar, steady state, axisymmetric two-dimensional in a vertical cylindrical channel filled with porous media. Heat is generated uniformly along the center of the channel with its vertical surface remain with cooled constant wall temperature and insulated horizontal top and bottom surfaces. The governing equations which used are continuity, momentum and energy equations using Darcy law and Boussinesq's approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 program. The parameters affected on the system are Rayleigh number ranging within (10≤ Ra ≤ 103), aspect ratio (1 ≤ As 〈 5) and the volume fraction (0 ≤0 〈 0.2). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that as ~ increase from 0.01 to 0.2 the value of the mean Nusselt number increase 50.4% for Ra = 1,000.
基金supported by National Natural Science Foundation of China(51579224)Zhejiang Province Key Science and Technology Innovation Team Project(2013TD18)Zhejiang Province Science and Technology Plan Project(2017C34007)
文摘Flow around two rotating side-by-side circular cylinders of equal diameter D is numerically studied at the Rey- nolds number 40〈 Re 〈200 and various rotation rate 8i. The incoming flow is assumed to be two-dimensional laminar flow. The governing equations are the incompressible Navier-Stokes equations and solved by the finite volume method (FVM). The ratio of the center-to-center spacing to the cylinder diameter is T/D=2. The objective of the present work is to investigate the effect of rotational speed and Reynolds number on the stability of the flow. The simulation results are compared with the experimental data and a good agreement is achieved. The stability of the flow is analyzed by using the energy gradient theory, which produces the energy gradient function K to identify the region where the flow is the most prone to be destabilized and the degree of the destabilization. Numerical results reveal that K is the most significant at the separated shear layers of the cylinder pair. With Re in- creases, the length of the wake is shorter and the vortex shedding generally exhibits a symmetrical distribution for θi〈θcrit. It is also shown that the unsteady vortex shedding can be suppressed by rotating the cylinders in the counter-rotating mode.
文摘Cylindrical and spherical (nonplanar) solitary waves (SWs) and double layers (DLs) in a multi-ion plasma system (containing inertial positively as well as negatively charged ions, non-inertial degenerate electrons, and negatively charged static dust) are studied by employing the standard reductive perturbation method. The modified Gardner (MG) equation describing the nonlinear propagation of the dust ion-acoustic (DIA) waves is derived, and its nonplanar SWs and DLs solutions are numerically analyzed. The parametric regimes for the existence of SWs, which are associated with both positive and negative potential, and DLs which are associated with negative potential, are obtained. The basic features of nonplanar DIA SWs, and DLs, which are found to be different from planar ones, are also identified.
基金supported by the National Natural Science Foundation of China(Grant No.11372159)
文摘Hypersonic boundary layer transition induced by an isolated cylindrical roughness element is investigated using direct numerical simulation method based on a finite volume formulation.To simulate the transition procedure by resolving the generation and evolvement of small-scale coherent structures,and capture the shock wave at the same time,high-order minimum dispersion and controllable dissipation scheme is validated and then applied.The results are compared with the available measurements in the quiet wind tunnel,such as the dominated frequency and root mean square of pressure.The computational dominated frequency of 19.23 k Hz is very close to the experimental one,21 k Hz.Also,the disturbances of the roughness are mostly generated by the"jet"just before the roughness,and then they travel and develop downstream with the shear layer and vortex shedding.The transition is mainly dominated by the instabilities of both the horseshoe vortex and the shear layer.
文摘Electron-acoustic shock waves (EASWs) in an unmagnetized four-component plasma (containing hot elec- trons and positrons following the q-nonextensiv.e distribution, cold mobile viscous electron fluid, and immobile positive ions) are studied in nonplanar (cylindrical and spherical) geometry. With the help of the reductive perturbation method, the modified Burgers equation is derived. Analytically, the effects of nonplanar geometry, nonextensivity, relative number density and temperature ratios, and cold electron kinematic viscosity on the basic properties (viz. amplitude, width, speed, etc.) of EASWs are discussed. It is exarmined that the EASWs in nonplanar geometry significantly differ from those in planar geometry. The results of this investigation can be helpful in understanding the nonlinear features of EASWs in various astrophysical plasmas.