We explore the ultimate fate of the Universe by using a divergence-free parametrization for dark energy w(z)=w0+wa, [In(2 + z) / (1 + z) - In 2] . Unlike the Chevallier-Polarski-Linder parametrization, this p...We explore the ultimate fate of the Universe by using a divergence-free parametrization for dark energy w(z)=w0+wa, [In(2 + z) / (1 + z) - In 2] . Unlike the Chevallier-Polarski-Linder parametrization, this parametrization has well behaved, bounded behavior for both high redshifts and negative redshifts, and thus can genuinely cover many theoretical dark energy models. Alter constraining the parameter space of this parametrization by using the current cosmological observations, we find that, at the 95.4% confidence level, our Universe can still exist at least 16.7 Gyr before it ends in a big rip. Moreover, for the phantom energy dominated Universe, we find that a gravitationally bound system will be destroyed at a time t = P√2| 1 + 3w( 1)] / [6π] 1 + w(-1)|], where P is the period of a circular orbit around this system, before the big rip.展开更多
基金supported by the Project of Knowledge Innovation Program of Chinese Academy of Sciencesthe National Natural Science Foundation of China (Grant Nos. 11105053, 10705041, 10975032, 11175042,10535060, 10975172 and 10821504)+1 种基金the National Ministry of Education of China (Grant Nos. NCET-09-0276 and N100505001)the National Basic Research Program of China (Grant No. 2007CB815401)
文摘We explore the ultimate fate of the Universe by using a divergence-free parametrization for dark energy w(z)=w0+wa, [In(2 + z) / (1 + z) - In 2] . Unlike the Chevallier-Polarski-Linder parametrization, this parametrization has well behaved, bounded behavior for both high redshifts and negative redshifts, and thus can genuinely cover many theoretical dark energy models. Alter constraining the parameter space of this parametrization by using the current cosmological observations, we find that, at the 95.4% confidence level, our Universe can still exist at least 16.7 Gyr before it ends in a big rip. Moreover, for the phantom energy dominated Universe, we find that a gravitationally bound system will be destroyed at a time t = P√2| 1 + 3w( 1)] / [6π] 1 + w(-1)|], where P is the period of a circular orbit around this system, before the big rip.