Based on constructal theory and entransy theory,the optimal designs of constant-and variable-cross-sectional cylindrical heat sources are carried out by taking dimensionless equivalent resistance minimization as optim...Based on constructal theory and entransy theory,the optimal designs of constant-and variable-cross-sectional cylindrical heat sources are carried out by taking dimensionless equivalent resistance minimization as optimization objective.The effects of the cylindrical height,the cylindrical shape and the ratio of thermal conductivity of the fin to that of the heat source are analyzed.The results show that when the volume of the heat source is fixed,there exists an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius which leads to the minimum dimensionless equivalent thermal resistance.With the increase in the height of the cylindrical heat source and the ratio of thermal conductivity,the minimum dimensionless equivalent thermal resistance decreases gradually.For the heat source model with inverted variable-cross-sectional cylinder,there exist an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius and an optimal radius ratio of the smaller and bigger circles of the cylindrical fin which lead to a double minimum dimensionless equivalent thermal resistance.Therefore,the heat transfer performance of the cylindrical heat source is improved by adopting the cylindrical model with variable-cross-section.The optimal constructs of the cylindrical heat source based on the minimizations of dimensionless maximum thermal resistance and dimensionless equivalent thermal resistance are different.When the thermal security is ensured,the optimal construct of the cylindrical heat source based on minimum equivalent thermal resistance can provide a new alternative scheme for the practical design of heat source.The results obtained herein enrich the work of constructal theory and entransy theory in the optimal design field of the heat sources,and they can provide some guidelines for the designs of practical heat source systems.展开更多
Target dimension is important information in underwater target classification. An intrinsic mode characteristic extraction method in underwater cylindrical shell acoustic radiation was studied in this paper based on t...Target dimension is important information in underwater target classification. An intrinsic mode characteristic extraction method in underwater cylindrical shell acoustic radiation was studied in this paper based on the mechanism of shell vibration to gain the information about its dimension instead of accurate inversion processing. The underwater cylindrical shell vibration and acoustic radiation were first analyzed using mode decomposition to solve the wave equation. The characteristic of acoustic radiation was studied with different cylindrical shell lengths, radii, thickness, excitation points and fine structures. Simulation results show that the intrinsic mode in acoustic radiation spectrum correlates closely with the geometry dimensions of cylindrical shells. Through multifaceted analysis, the strongest intrinsic mode characteristic extracted from underwater shell acoustic radiated signal was most likely relevant to the radiated source radius. Then, partial information about unknown source dimension could be gained from intrinsic mode characteristic in passive sonar applications for underwater target classification. Experimental data processing results verified the effectiveness of the method in this paper.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.5120618451176203&51356001)
文摘Based on constructal theory and entransy theory,the optimal designs of constant-and variable-cross-sectional cylindrical heat sources are carried out by taking dimensionless equivalent resistance minimization as optimization objective.The effects of the cylindrical height,the cylindrical shape and the ratio of thermal conductivity of the fin to that of the heat source are analyzed.The results show that when the volume of the heat source is fixed,there exists an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius which leads to the minimum dimensionless equivalent thermal resistance.With the increase in the height of the cylindrical heat source and the ratio of thermal conductivity,the minimum dimensionless equivalent thermal resistance decreases gradually.For the heat source model with inverted variable-cross-sectional cylinder,there exist an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius and an optimal radius ratio of the smaller and bigger circles of the cylindrical fin which lead to a double minimum dimensionless equivalent thermal resistance.Therefore,the heat transfer performance of the cylindrical heat source is improved by adopting the cylindrical model with variable-cross-section.The optimal constructs of the cylindrical heat source based on the minimizations of dimensionless maximum thermal resistance and dimensionless equivalent thermal resistance are different.When the thermal security is ensured,the optimal construct of the cylindrical heat source based on minimum equivalent thermal resistance can provide a new alternative scheme for the practical design of heat source.The results obtained herein enrich the work of constructal theory and entransy theory in the optimal design field of the heat sources,and they can provide some guidelines for the designs of practical heat source systems.
基金supported by the Project of the Key Laboratory of Science and Technology on Underwater Test and Control(Grant No.9140C260505120C26104)the National Natural Science Foundation of China(Grant No. 11104029)
文摘Target dimension is important information in underwater target classification. An intrinsic mode characteristic extraction method in underwater cylindrical shell acoustic radiation was studied in this paper based on the mechanism of shell vibration to gain the information about its dimension instead of accurate inversion processing. The underwater cylindrical shell vibration and acoustic radiation were first analyzed using mode decomposition to solve the wave equation. The characteristic of acoustic radiation was studied with different cylindrical shell lengths, radii, thickness, excitation points and fine structures. Simulation results show that the intrinsic mode in acoustic radiation spectrum correlates closely with the geometry dimensions of cylindrical shells. Through multifaceted analysis, the strongest intrinsic mode characteristic extracted from underwater shell acoustic radiated signal was most likely relevant to the radiated source radius. Then, partial information about unknown source dimension could be gained from intrinsic mode characteristic in passive sonar applications for underwater target classification. Experimental data processing results verified the effectiveness of the method in this paper.