Brooke-Spiegler syndrome (BSS), familial cylindromatosis (FC), and multiple familial trichoepithelioma (MFT), originally described as distinct entities, share overlapping clinical findings. Patients with BSS are predi...Brooke-Spiegler syndrome (BSS), familial cylindromatosis (FC), and multiple familial trichoepithelioma (MFT), originally described as distinct entities, share overlapping clinical findings. Patients with BSS are predisposed to multiple skin appendage tumors such as cylindroma, trichoepithelioma, and spiradenoma. FC, however, is characterized by cylindromas and MFT by trichoepitheliomas as the only tumor type. These disorders have recently been associated with mutations in the CYLD gene. In this report, we describe three families with BSS, one with FC, and two with MFT phenotypes associated with novel and recurrent mutations in CYLD. We provide evidence that these disorders represent phenotypic variation of a single entity and lack genotype-phenotype correlation.展开更多
Familial cylindromatosis is a rare dominantly inherited disease characterized by the development of multiple benign tumours of the skin appendages, including cylindromas, trichoepitheliomas and spiradenomas. The gene ...Familial cylindromatosis is a rare dominantly inherited disease characterized by the development of multiple benign tumours of the skin appendages, including cylindromas, trichoepitheliomas and spiradenomas. The gene responsible was positionally cloned recently, and was designated CYLD.We describe a family with cylindromatosis, in which affected individuals have an inherited R758X nonsense mutation of CYLD. Affected members of this family manifest a relativelymild tumour phenotype; the largest tumour was only 30 mm in diameter. Thus far, there is no evident genotype-phenotype relationship in cylindromatosis, although the number of families reported with both phenotypic and genotypic data remains small.展开更多
Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-...Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-grain dimension lumber that are bonded together with durable,moisture resistant structural adhesives.GLT can be used in horizontal applications as a beam and in vertical applications as a post.So,its compressive performance has a significant impact on structural safety.Fiber reinforced polymers(FRPs)were commonly used to improve the bearing capacity of GLT components,and the structural and process parameters largely determined the reinforcement effect.This study was aimed at investigating the influence of structural and process parameters on the axial compression performance of GLT components.Three wrapping methods(middle-part,end-part and full wrapping)and three lengths(0.6,0.8,and 1.0 m)of wood post specimens were designed in this work and the axial compression performance and ductility of GLT post specimens modified by basalt fiber reinforced polymer(BFRP)were studied.The results showed that the effect of different BFRP wrapping methods on the compressive strength and elastic modulus of laminated wood was not statistically significant(P>0.05).The compressive bearing capacity of unreinforced GLT posts decreased with the increase of aspect ratio.The GLT posts with middle-part and end-part wrapping still followed this pattern,while the compressive bearing capacity of GLT posts with full wrapping showed a pattern of first decreasing and then increasing.For GLT with low aspect ratios(4.0 or 5.3),there was no correlation between the wrapping method and the compressive bearing capacity,while the compressive bearing capacity of GLT with a high aspect ratio(6.7)for middle-part,end-part and full wrapping increased by 3.5%,7.5%and 9.7%,respectively.Compared to the unreinforced group,the ultimate axial compressive strength and modulus of elasticity(MOE)of the 6-E series specimens reinforced at both ends decreased by 2.58%and 6.70%,respectively.The ultimate axial compressive strength of the 8-E specimens reinforced at both ends increased by 8.62%and the MOE decreased by 1.91%.The compressive strength of the 10-E specimens reinforced at both ends increased by 7.51%and the MOE increased by 8.14%.The failure modes of GLT with different aspects were consistent under the same BFRP wrapping,while the failure modes of GLT with the same aspect ratio were different for different BFRP wrapping methods.The ductility performance of GLT with different aspects ratio was improved by the BFRP wrapping.展开更多
The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three ...The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three dimensional N-S equations were obtained by the finite volume method. The focus of this numerical simulation was to research the characteristics of pressure distribution (drag and litt forces) and vortex tubes at high Reynolds numbers. The results of the calculations showed that the forces at every section in the spanwise direction of the cylinder were symmetrical about the middle section and smaller than the forces calculated in two dimensional cases. Moreover, the flow around the cylinder obviously presents three dimensional characteristics.展开更多
In order to obtain a new-type short cylindrical cup-shaped flexspline that can be applied to space mechanisms,the APDL language of ANSYS software was employed to develop a parameterized equivalent contact model betwee...In order to obtain a new-type short cylindrical cup-shaped flexspline that can be applied to space mechanisms,the APDL language of ANSYS software was employed to develop a parameterized equivalent contact model between a flexspline and a wave generator. The validity of the parameterized equivalent contact model was verified by comparing the results of the analytic value of the contact model and the value calculated by the theoretical formula. The curvilinear trend of stress was obtained by changing the structural parameter of the flexspline. Based on the curvilinear trend of stress,multi-objective optimizations of key structural parameters were achieved. Flexspline,wave generator,and circular spline of a new 32-type short cylindrical cup-shaped harmonic reducer were designed and manufactured. A performance test bench to carry out tests on the harmonic reducer was designed. Contrast experiments were implemented to determine the efficiency of the new 32-type short cylindrical cup-shaped harmonic reducer and the conventional 32-type harmonic reducer under different conditions. The experimental results reveal that there is approximately equality in terms of efficiency between the new 32-type short cylindrical cup-shaped harmonic reducer and the conventional 32-type harmonic reducer. The volume of the flexspline of the new 32-type short cylindrical cup-shaped harmonic reducer is reduced by approximately 30% through multi-objective optimization. When the new 32-type short cylindrical cup-shaped harmonic reducer is used on the wheel of a rover prototype,the mass of the wheel hub is decreased by 0.42 kg. Test analysis of wheel motion verifies that the new 32-type short cylindrical cup-shaped harmonic reducer can meet the requirements regarding bearing capacity and efficiency.展开更多
Scattering and dynamic stress concentrations of time harmonic SH-wave in an infinite elastic piezoelectric medium with a movable rigid cylindrical inclusion are studied in this paper with the help of complex variable ...Scattering and dynamic stress concentrations of time harmonic SH-wave in an infinite elastic piezoelectric medium with a movable rigid cylindrical inclusion are studied in this paper with the help of complex variable and wave function expansion method. The relations that a movable rigid cylindrical inclusion depends on intensity of incident wave and electric field are revealed. The expressions of dynamic stress at the edge of the inclusion are obtained. Numerical calculations are made with different wave numbers and different piezoelectric characteristic parameters. The calculating results show that dynamic stress concentrations at the edge of the inclusion have linear dependence on the incident electric field. And dynamic analyses are very important for an infinite piezoelectric medium with a movable rigid cylindrical inclusion at larger piezoelectric characteristic parameters.展开更多
Energy method for the vibration of two types of cylindrical shells,namely thin-walled homogeneous isotropic and manifold layered isotropic cylindrical shells under uniform external lateral pressure is presented.The st...Energy method for the vibration of two types of cylindrical shells,namely thin-walled homogeneous isotropic and manifold layered isotropic cylindrical shells under uniform external lateral pressure is presented.The study is carried out based on strain-displacement relationship from Love's shell theory with beam functions as axial modal function.A manifold layered cylindrical shell configuration is formed by three layers of isotropic material where the inner and outer layers are stainless steel and the middle layer is aluminum.The homogeneous cylindrical shell is made-up of isotropic one layer with stainless steel.The governing equations with uniform external lateral pressure for homogeneous isotropic and manifold layered isotropic cylindrical shells are obtained using energy functional by the Lagrangian function with Rayleigh-Ritz method.The boundary conditions that are presented at the end conditions of the cylindrical shell are simply supported-simply supported,clamped-clamped and free-free.The influences of uniform external lateral pressure and symmetrical boundary conditions on the natural frequency characteristics for both homogeneous and manifold layered isotropic cylindrical shells are examined.For all boundary conditions considered,the natural frequency of both cylindrical shells with symmetric uniform lateral pressure increases as h/R ratio increases and those considering natural frequency of the both cylindrical shells with symmetric uniform lateral pressure decrease as L/R ratio increases.展开更多
A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) o...A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) of the cylindrical shell.Both global and local control strategies were considered.The optimal control forces corresponding to each control strategy were obtained by using the linear quadratic optimal control theory.Numerical simulations were performed to examine and analyze the control performance under different control strategies.The results show that global sound attenuation of the cylindrical shell at resonance frequencies can be achieved by using point force as the control input of the ASAC system.Better control performance can be obtained under the control strategy of minimization of the radiated sound power.However,control spillover may occur at off-resonance frequencies with the control strategy of structural kinetic energy minimization in terms of the radiated sound power.Considerable levels of global sound attenuation can also be achieved in the on-resonance cases with the local control strategy,i.e.,minimization of the mean-square velocity of finite discrete locations.An ASAC experiment using an FXLMS algorithm was implemented,agreement was observed between the numerical and experimental results,and successful attenuation of structural vibration and radiated sound was achieved.展开更多
Finite element(FEM)analysis was used to systematically evaluate the inhomogeneity of deformation in cylindrical samples with various sample-anvil friction coefficients,m.It was found that the level of friction strongl...Finite element(FEM)analysis was used to systematically evaluate the inhomogeneity of deformation in cylindrical samples with various sample-anvil friction coefficients,m.It was found that the level of friction strongly influences the deformation homogeneity,which increases significantly with the friction coefficient although the overall geometry of the samples almost remains the same when m >0.4.The position,at which the effective strain along the maximum radial direction in a compressed sample is equal to the equivalent strain of the sample,does not vary greatly with respect to both equivalent strain of the sample and m.Hardness measurements of compressed cylindrical 5056B Al alloy samples revealed a change of effective strain distribution similar to that revealed by FEM analysis.There exists a quantitative relationship between the hardness and the effective strain if no recrystallization or recovery occurs during the compression process.展开更多
In the current work, to predict and improve the formability of deep drawing process for steel plate cold rolled commercial grade (SPCC) sheets, three parameters including the blanking force, the die and punch comer ...In the current work, to predict and improve the formability of deep drawing process for steel plate cold rolled commercial grade (SPCC) sheets, three parameters including the blanking force, the die and punch comer radius were considered. The experimental plan according to Taguchi's orthogonal array was coupled with the finite element method (FEM) simulations. Firstly, the data from the test of stress-strain and forming limit curves were used as input into ABAQUS/Explicit finite element code to predict the failure occurrence of deep drawing process. The three parameters were then validated to establish their effects on the press formability. The optimum case found via simulation was finally confirmed through an experiment. In order to obtain the complex curve profile of cup shape after deep drawing, the anisotropic behavior of earring phenomenon was modeled and implemented into FEM. After such phenomenon was correctly predicted, an error metric compared with design curve was then measured.展开更多
Influence of identical applied initial pressures on the radial surfaces of a hollow cylinder which is compose of materials with first power hypo-elastic constitutive model was investigated.The basic equations of the p...Influence of identical applied initial pressures on the radial surfaces of a hollow cylinder which is compose of materials with first power hypo-elastic constitutive model was investigated.The basic equations of the problem were built up based on the framework of piecewise homogeneous body model with the use of three-dimensional linearized theory of elastic waves in initially stressed bodies(TLTEWISB).With the method proposed previously,this problem was then solved numerically.Moreover,the dispersion group velocity of the lowest order mode with different initial pressures was also studied.It can be concluded that the initial pressure and the geometry parameters will induce considerable changes of different degrees in dispersive relation between phase velocity and wave number in opposite trend(positive in initial pressure and negative in thickness).展开更多
Useful structure characteristics of elastic cylindrical shells have led them to being widely applied in virtual projects,so it is important to conduct vibration research on the shells and find it’s a simpler correspo...Useful structure characteristics of elastic cylindrical shells have led them to being widely applied in virtual projects,so it is important to conduct vibration research on the shells and find it’s a simpler corresponding compact calculation method. Utilising the input and transfer point mobility of a thin plate structure, a theoretical expression of the cylindrical shell’s bending vibration responsewas deduced and numerical simulations were done to simplify the theoretical expression within an acceptable error margin, greatly reducing the amount of computations. Furthermore, whole vibration response distributions of the cylindrical shell were analyzed. It was found thathe vibration energy propagates in helical form under mono-frequency excitation, while under bandwidth frequency excitation, it attenuates around in term of fluctuation.The axial attenuation rate of the vibration energy is larger than the circumferential attenuation rate.展开更多
A general method was proposed to study the sound and vibration of a finite cylindrical shell with elastic theory. This method was developed through comprehensive analysis of the uncoupled Helmholtz equation obtained b...A general method was proposed to study the sound and vibration of a finite cylindrical shell with elastic theory. This method was developed through comprehensive analysis of the uncoupled Helmholtz equation obtained by the decomposition of elastic equations and the structure of the solution of a finite cylindrical shell analyzed by thin shell theory. The proposed method is theoretically suitable for arbitrary thickness of the shell and any frequency. Also, the results obtained through the method can be used to determine the range of application of the thin shell theory. Furthermore, the proposed method can deal with the problems limited by the thin shell theory. Additionally, the method can be suitable for several types of complex cylindrical shell such as the ring-stiffened cylindrical shell, damped cylindrical shell, and double cylindrical shell.展开更多
Applying Parikh-Wilzcek's semi-classical quantum tunneling model, we study the Hawking radiation of charged particles as tunneling from the event horizon of a cylindrically symmetric black hole in anti-de Sitter spac...Applying Parikh-Wilzcek's semi-classical quantum tunneling model, we study the Hawking radiation of charged particles as tunneling from the event horizon of a cylindrically symmetric black hole in anti-de Sitter space-time. The derived result shows that the tunneling rate of charged particles is related to the change of Bekenstein-Hawking entropy and that the radiation spectrum is not strictly pure thermal after taking the black hole background dynamical and self-gravitation interaction into account, but is consistent with the underlying unitary theory.展开更多
文摘Brooke-Spiegler syndrome (BSS), familial cylindromatosis (FC), and multiple familial trichoepithelioma (MFT), originally described as distinct entities, share overlapping clinical findings. Patients with BSS are predisposed to multiple skin appendage tumors such as cylindroma, trichoepithelioma, and spiradenoma. FC, however, is characterized by cylindromas and MFT by trichoepitheliomas as the only tumor type. These disorders have recently been associated with mutations in the CYLD gene. In this report, we describe three families with BSS, one with FC, and two with MFT phenotypes associated with novel and recurrent mutations in CYLD. We provide evidence that these disorders represent phenotypic variation of a single entity and lack genotype-phenotype correlation.
文摘Familial cylindromatosis is a rare dominantly inherited disease characterized by the development of multiple benign tumours of the skin appendages, including cylindromas, trichoepitheliomas and spiradenomas. The gene responsible was positionally cloned recently, and was designated CYLD.We describe a family with cylindromatosis, in which affected individuals have an inherited R758X nonsense mutation of CYLD. Affected members of this family manifest a relativelymild tumour phenotype; the largest tumour was only 30 mm in diameter. Thus far, there is no evident genotype-phenotype relationship in cylindromatosis, although the number of families reported with both phenotypic and genotypic data remains small.
文摘Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-grain dimension lumber that are bonded together with durable,moisture resistant structural adhesives.GLT can be used in horizontal applications as a beam and in vertical applications as a post.So,its compressive performance has a significant impact on structural safety.Fiber reinforced polymers(FRPs)were commonly used to improve the bearing capacity of GLT components,and the structural and process parameters largely determined the reinforcement effect.This study was aimed at investigating the influence of structural and process parameters on the axial compression performance of GLT components.Three wrapping methods(middle-part,end-part and full wrapping)and three lengths(0.6,0.8,and 1.0 m)of wood post specimens were designed in this work and the axial compression performance and ductility of GLT post specimens modified by basalt fiber reinforced polymer(BFRP)were studied.The results showed that the effect of different BFRP wrapping methods on the compressive strength and elastic modulus of laminated wood was not statistically significant(P>0.05).The compressive bearing capacity of unreinforced GLT posts decreased with the increase of aspect ratio.The GLT posts with middle-part and end-part wrapping still followed this pattern,while the compressive bearing capacity of GLT posts with full wrapping showed a pattern of first decreasing and then increasing.For GLT with low aspect ratios(4.0 or 5.3),there was no correlation between the wrapping method and the compressive bearing capacity,while the compressive bearing capacity of GLT with a high aspect ratio(6.7)for middle-part,end-part and full wrapping increased by 3.5%,7.5%and 9.7%,respectively.Compared to the unreinforced group,the ultimate axial compressive strength and modulus of elasticity(MOE)of the 6-E series specimens reinforced at both ends decreased by 2.58%and 6.70%,respectively.The ultimate axial compressive strength of the 8-E specimens reinforced at both ends increased by 8.62%and the MOE decreased by 1.91%.The compressive strength of the 10-E specimens reinforced at both ends increased by 7.51%and the MOE increased by 8.14%.The failure modes of GLT with different aspects were consistent under the same BFRP wrapping,while the failure modes of GLT with the same aspect ratio were different for different BFRP wrapping methods.The ductility performance of GLT with different aspects ratio was improved by the BFRP wrapping.
文摘The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three dimensional N-S equations were obtained by the finite volume method. The focus of this numerical simulation was to research the characteristics of pressure distribution (drag and litt forces) and vortex tubes at high Reynolds numbers. The results of the calculations showed that the forces at every section in the spanwise direction of the cylinder were symmetrical about the middle section and smaller than the forces calculated in two dimensional cases. Moreover, the flow around the cylinder obviously presents three dimensional characteristics.
基金Project(2010DFR70270) supported by the International Science and Technology Cooperation Project with RussiaProjects(50975059,61005080) supported by the National Natural Science Foundation of China+2 种基金Project(B07018) supported by "111" Program of ChinaProject(SKLRS200801A02) supported by the Foundation of State Key Laboratory of Robotics and System (Harbin Institute of Technology),ChinaProject(HIT2009061) supported by the Key Subject Laboratory Open Fund of China
文摘In order to obtain a new-type short cylindrical cup-shaped flexspline that can be applied to space mechanisms,the APDL language of ANSYS software was employed to develop a parameterized equivalent contact model between a flexspline and a wave generator. The validity of the parameterized equivalent contact model was verified by comparing the results of the analytic value of the contact model and the value calculated by the theoretical formula. The curvilinear trend of stress was obtained by changing the structural parameter of the flexspline. Based on the curvilinear trend of stress,multi-objective optimizations of key structural parameters were achieved. Flexspline,wave generator,and circular spline of a new 32-type short cylindrical cup-shaped harmonic reducer were designed and manufactured. A performance test bench to carry out tests on the harmonic reducer was designed. Contrast experiments were implemented to determine the efficiency of the new 32-type short cylindrical cup-shaped harmonic reducer and the conventional 32-type harmonic reducer under different conditions. The experimental results reveal that there is approximately equality in terms of efficiency between the new 32-type short cylindrical cup-shaped harmonic reducer and the conventional 32-type harmonic reducer. The volume of the flexspline of the new 32-type short cylindrical cup-shaped harmonic reducer is reduced by approximately 30% through multi-objective optimization. When the new 32-type short cylindrical cup-shaped harmonic reducer is used on the wheel of a rover prototype,the mass of the wheel hub is decreased by 0.42 kg. Test analysis of wheel motion verifies that the new 32-type short cylindrical cup-shaped harmonic reducer can meet the requirements regarding bearing capacity and efficiency.
基金Supported by the Nature Science Foundation ofHeilongjiang Province of China (No.A00-10) the Basis Re-search Foundation of Harbin Engineering University ( No.HEUF04008).
文摘Scattering and dynamic stress concentrations of time harmonic SH-wave in an infinite elastic piezoelectric medium with a movable rigid cylindrical inclusion are studied in this paper with the help of complex variable and wave function expansion method. The relations that a movable rigid cylindrical inclusion depends on intensity of incident wave and electric field are revealed. The expressions of dynamic stress at the edge of the inclusion are obtained. Numerical calculations are made with different wave numbers and different piezoelectric characteristic parameters. The calculating results show that dynamic stress concentrations at the edge of the inclusion have linear dependence on the incident electric field. And dynamic analyses are very important for an infinite piezoelectric medium with a movable rigid cylindrical inclusion at larger piezoelectric characteristic parameters.
文摘Energy method for the vibration of two types of cylindrical shells,namely thin-walled homogeneous isotropic and manifold layered isotropic cylindrical shells under uniform external lateral pressure is presented.The study is carried out based on strain-displacement relationship from Love's shell theory with beam functions as axial modal function.A manifold layered cylindrical shell configuration is formed by three layers of isotropic material where the inner and outer layers are stainless steel and the middle layer is aluminum.The homogeneous cylindrical shell is made-up of isotropic one layer with stainless steel.The governing equations with uniform external lateral pressure for homogeneous isotropic and manifold layered isotropic cylindrical shells are obtained using energy functional by the Lagrangian function with Rayleigh-Ritz method.The boundary conditions that are presented at the end conditions of the cylindrical shell are simply supported-simply supported,clamped-clamped and free-free.The influences of uniform external lateral pressure and symmetrical boundary conditions on the natural frequency characteristics for both homogeneous and manifold layered isotropic cylindrical shells are examined.For all boundary conditions considered,the natural frequency of both cylindrical shells with symmetric uniform lateral pressure increases as h/R ratio increases and those considering natural frequency of the both cylindrical shells with symmetric uniform lateral pressure decrease as L/R ratio increases.
基金Supported by the National Natural Science Foundation of China (No.10802024)Research Fund for the Doctoral Program of Higher Education of China (No. 200802171009)+2 种基金the Natural Science Foundation of Heilongjiang Province (No.E200944)Innovative Talents Fund of Harbin (No.2009RFQXG211)Fundamental Research Fund of HEU (No. HEUFT08003)
文摘A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) of the cylindrical shell.Both global and local control strategies were considered.The optimal control forces corresponding to each control strategy were obtained by using the linear quadratic optimal control theory.Numerical simulations were performed to examine and analyze the control performance under different control strategies.The results show that global sound attenuation of the cylindrical shell at resonance frequencies can be achieved by using point force as the control input of the ASAC system.Better control performance can be obtained under the control strategy of minimization of the radiated sound power.However,control spillover may occur at off-resonance frequencies with the control strategy of structural kinetic energy minimization in terms of the radiated sound power.Considerable levels of global sound attenuation can also be achieved in the on-resonance cases with the local control strategy,i.e.,minimization of the mean-square velocity of finite discrete locations.An ASAC experiment using an FXLMS algorithm was implemented,agreement was observed between the numerical and experimental results,and successful attenuation of structural vibration and radiated sound was achieved.
基金Project(2016JJ1016) supported by the Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProject(201301G0105337290) supported by the Program of Innovation and Entrepreneur Team Introduced by Guangdong Province,China
文摘Finite element(FEM)analysis was used to systematically evaluate the inhomogeneity of deformation in cylindrical samples with various sample-anvil friction coefficients,m.It was found that the level of friction strongly influences the deformation homogeneity,which increases significantly with the friction coefficient although the overall geometry of the samples almost remains the same when m >0.4.The position,at which the effective strain along the maximum radial direction in a compressed sample is equal to the equivalent strain of the sample,does not vary greatly with respect to both equivalent strain of the sample and m.Hardness measurements of compressed cylindrical 5056B Al alloy samples revealed a change of effective strain distribution similar to that revealed by FEM analysis.There exists a quantitative relationship between the hardness and the effective strain if no recrystallization or recovery occurs during the compression process.
基金Project(107.02-2013.01)supported by the Vietnam’s National Foundation for Science and Technology Development
文摘In the current work, to predict and improve the formability of deep drawing process for steel plate cold rolled commercial grade (SPCC) sheets, three parameters including the blanking force, the die and punch comer radius were considered. The experimental plan according to Taguchi's orthogonal array was coupled with the finite element method (FEM) simulations. Firstly, the data from the test of stress-strain and forming limit curves were used as input into ABAQUS/Explicit finite element code to predict the failure occurrence of deep drawing process. The three parameters were then validated to establish their effects on the press formability. The optimum case found via simulation was finally confirmed through an experiment. In order to obtain the complex curve profile of cup shape after deep drawing, the anisotropic behavior of earring phenomenon was modeled and implemented into FEM. After such phenomenon was correctly predicted, an error metric compared with design curve was then measured.
基金Project(51378463)supported by National Natural Science Foundation of China
文摘Influence of identical applied initial pressures on the radial surfaces of a hollow cylinder which is compose of materials with first power hypo-elastic constitutive model was investigated.The basic equations of the problem were built up based on the framework of piecewise homogeneous body model with the use of three-dimensional linearized theory of elastic waves in initially stressed bodies(TLTEWISB).With the method proposed previously,this problem was then solved numerically.Moreover,the dispersion group velocity of the lowest order mode with different initial pressures was also studied.It can be concluded that the initial pressure and the geometry parameters will induce considerable changes of different degrees in dispersive relation between phase velocity and wave number in opposite trend(positive in initial pressure and negative in thickness).
文摘Useful structure characteristics of elastic cylindrical shells have led them to being widely applied in virtual projects,so it is important to conduct vibration research on the shells and find it’s a simpler corresponding compact calculation method. Utilising the input and transfer point mobility of a thin plate structure, a theoretical expression of the cylindrical shell’s bending vibration responsewas deduced and numerical simulations were done to simplify the theoretical expression within an acceptable error margin, greatly reducing the amount of computations. Furthermore, whole vibration response distributions of the cylindrical shell were analyzed. It was found thathe vibration energy propagates in helical form under mono-frequency excitation, while under bandwidth frequency excitation, it attenuates around in term of fluctuation.The axial attenuation rate of the vibration energy is larger than the circumferential attenuation rate.
基金Supported by the National Natural Science Foundation of China under (Grant No. 40976058)
文摘A general method was proposed to study the sound and vibration of a finite cylindrical shell with elastic theory. This method was developed through comprehensive analysis of the uncoupled Helmholtz equation obtained by the decomposition of elastic equations and the structure of the solution of a finite cylindrical shell analyzed by thin shell theory. The proposed method is theoretically suitable for arbitrary thickness of the shell and any frequency. Also, the results obtained through the method can be used to determine the range of application of the thin shell theory. Furthermore, the proposed method can deal with the problems limited by the thin shell theory. Additionally, the method can be suitable for several types of complex cylindrical shell such as the ring-stiffened cylindrical shell, damped cylindrical shell, and double cylindrical shell.
基金The project supported by the Science Foundation for Fundamental Research of Sichuan Province of China under Grant No. 05JY029-092 .
文摘Applying Parikh-Wilzcek's semi-classical quantum tunneling model, we study the Hawking radiation of charged particles as tunneling from the event horizon of a cylindrically symmetric black hole in anti-de Sitter space-time. The derived result shows that the tunneling rate of charged particles is related to the change of Bekenstein-Hawking entropy and that the radiation spectrum is not strictly pure thermal after taking the black hole background dynamical and self-gravitation interaction into account, but is consistent with the underlying unitary theory.