The gassed power demand and volumetric mass transfer coefficient (kca) were investigated in a fully baffled, dished-base stirred vessel with a diameter of 0.30 m agitated by five triple-impeller combinations. Six ty...The gassed power demand and volumetric mass transfer coefficient (kca) were investigated in a fully baffled, dished-base stirred vessel with a diameter of 0.30 m agitated by five triple-impeller combinations. Six types of impellers (six-half-elliptical-blade disk turbine (HEDT), four-wide-blade hydrofoil impeller (WH) pumping down (D) and pumping up (U), parabolic-blade disk turbine (PDT), and CBY narrow blade (N) and wide blade (W)) were used to form five combinations identified by PDT + 2CBYN, PDT + 2CBYw, PDT + 2WHD, HEDT + 2WHD and HEDT + 2WHo, respectively. The results show that the relative power demand of HEDT + 2WHu is higher than that of other four impeller combinations under all operating conditions. At low superficial gas velocity (uc), kLa differences among impeller combinations are not obvious. However when UG iS high, PDT + 2WHD shows the best mass transfer performance and HEDT + 2WHu shows the worst mass trans- fer performance under all operating conditions. At high uc and a given power input, the impeller combinations with high agitation speed and big projection cross-sectional area lead to relatively high values of kLa. Based on the experimental data, the regressed correlations of gassed power number with Froude number and gas flow number, and kLa with power consumption and superficial gas velocity are obtained for five different impeller combinations, which could be used as guidance for industrial design.展开更多
In view of the axial force produced in the working process of double arc helical gear hydraulic pump,the theory of differential equation of curve and curved surface was utilized so that the calculation formula of axia...In view of the axial force produced in the working process of double arc helical gear hydraulic pump,the theory of differential equation of curve and curved surface was utilized so that the calculation formula of axial force was obtained and the relationship between the axial force and structure parameters of gears was clarified.In order to balance the axial force,the pressure oil in the high pressure area was introduced into the end face of the plunger to press the plunger against the gear shaft,and the hydrostatic bearing whose type is plunger at the end of the shaft was designed.In order to verify the balance effect of axial force,the leakage owing to end clearance and volume efficiency of gear hydraulic pump before and after the balancing process was analyzed.This paper provides a new analysis idea and balance scheme for the axial force produced in the working process of the double arc helical gear hydraulic pump,which can reduce the leakage owing to end clearance caused by the axial force and improve the volume efficiency of the gear hydraulic pump.展开更多
Hydrodynamics of conical fluidized bed differ from that of columnar beds by the fact that a velocity gradient exists along the axial direction of the bed.The gas–liquid–solid fluidized bed has emerged in recent year...Hydrodynamics of conical fluidized bed differ from that of columnar beds by the fact that a velocity gradient exists along the axial direction of the bed.The gas–liquid–solid fluidized bed has emerged in recent years as one of the most promising devices for three-phase operations.Such a device is of considerable industrial importance as evident from its wide applications in chemical,refining,petrochemical,biochemical processing,pharmaceutical and food industries.To explore this,a series of experiments have been carried out for homogeneous well-mixed ternary mixtures of dolomite of varying compositions in a three-phase conical fluidized bed.The hydrodynamic characteristics determined included the bed pressure drop,bed fluctuation and bed expansion ratios.The single and combined effects of operating parameters such as superficial gas velocity,superficial liquid velocity,initial static bed height,average particle size and cone angle on the responses have been analyzed using response surface methodology(RSM).A 25 full factorial central composite experimental design has been employed.Analysis of variance(ANOVA) showed a high coefficient of determination value and satisfactory prediction second-order regression models have been derived.Experimental values of bed pressure drop,bed fluctuation and bed expansion ratios have been found to agree well with the developed correlations.展开更多
Aim To analyze the secondary structure and neurotrophic effect of a specific protein in sensory neurons. Methods Comparison of the proteins expressed in the rat spinal sensory neurons and motor neurons was made by t...Aim To analyze the secondary structure and neurotrophic effect of a specific protein in sensory neurons. Methods Comparison of the proteins expressed in the rat spinal sensory neurons and motor neurons was made by two dimensional electrophoresis. One specific protein in sensory neurons was isolated and purified by DEAE Sephacel ion exchange chromatography and high performance liquid chromatography. A primary analysis of its secondary structure by circular dichroism, and its neurotrophic effects were investigated using the model of dorsal root ganglia(DRG) cultured in vitro . Results The molecular weight and isoelectric point of the protein were 33 1 kDa and 5 52, respectively. Its circular dichroism showed that there were 20 8% α helix, 54 8% β sheet, 7 3% turn, and 17 1% random coil in its secondary structure. Biological experiments showed that the protein could promote the neurite outgrowth of DRG. Conclusion A specific protein in spinal sensory tissue with molecular weight of 33 1 kDa has been purified. There is mainly β sheet in the secondary structure of the protein. And the protein has neurotrophic effects in the model of DRG.展开更多
The flow past a primary cylinder with one tandem control rod and one staggered control rod is simulated in this paper through solving the Navier-Stokes equations. Two examples are simulated to validate the model, and ...The flow past a primary cylinder with one tandem control rod and one staggered control rod is simulated in this paper through solving the Navier-Stokes equations. Two examples are simulated to validate the model, and the results matched well with those of previous researches. The Reynolds number based on the diameter of the primary cylinder is 500. The diameter ratio between the control rod and the primary cylinder (d/D) is 0.25. It was found that the effect of the combination of one upstream tandem control rod and one staggered control rod on the hydrodynamics of the primary cylinder is a linear superposition of the effect of a corresponding single control rod, and the effect of the upstream tandem control rod is dominant at larger spacing ratios such as G/D=2. For the combination of a downstream tandem control rod and a staggered control rod, the effect of the control rods is different from that of the corresponding single control rod in the region of 0.2〈G/D〈0.5 & 30°〈a〈120° and 0.9〈G/D〈1.4 & 30°〈a〈50°, where the additional effect is obvious. In this case, the effect of the downstream tandem control rod is dominant at small spacing ratios (such as G/D=0.1). At moderate spacing ratios such as G/D=0.4, the effects of the tandem control rod and the staggered control rod are comparable in both cases.展开更多
The flow pattern behaviour of falling liquid film over three horizontal cylinders was evaluated.These flows can take three forms:discrete droplets,individual jets,and continuous sheet,and special attention is paid to ...The flow pattern behaviour of falling liquid film over three horizontal cylinders was evaluated.These flows can take three forms:discrete droplets,individual jets,and continuous sheet,and special attention is paid to the effects of the physical properties and geometrical parameters of the first two forms(droplets and jets) because these forms are more important in heat-transfer behaviour and less research has been published for these forms,The flow modes and experimental results were successfully compared with previous experimental literatures,and also the effects of liquid flow rate,tube diameter,and tube spacing on departure site spacing,in both drop and jet modes,were evaluated in the low Galileo number and high viscosity fluid(cooking oil),to help developing criteria for determining falling film modes and their transitions,and to understand the heat transfer characteristics associated with each mode.展开更多
A new electrochemical reactor with rotating cylindrical electrodes was designed and used to increase the regeneration efficiency of chelated iron desulfurization solution.The influence of operating parameters,such as ...A new electrochemical reactor with rotating cylindrical electrodes was designed and used to increase the regeneration efficiency of chelated iron desulfurization solution.The influence of operating parameters,such as the rotation speed of electrode,voltage,and inlet air and liquid flow rates,on the regeneration rate was investigated.Compared with the traditional tank-type reactor,the regeneration rate with the new electrochemical reactor was increased significantly.Under the optimum conditions,the regeneration rate was increased from 45.3%to 84.8%.Experimental results of continuous operation indicated that the new electrochemical regeneration method had some merits including higher regeneration efficiency,smaller equipment size and good stability in operation.展开更多
This research investigates the possibility of convergent acoustic waves generation in the liquid by means of the sotmd waves reflection from the solid cylindrical surface, emerged in the pulsed electric discharge. The...This research investigates the possibility of convergent acoustic waves generation in the liquid by means of the sotmd waves reflection from the solid cylindrical surface, emerged in the pulsed electric discharge. The spectra of pulse discharge plasma emission in the water and in the air-water mixture were obtained. The temperature of cuprum and oxygen atoms electronic excitation levels and the temperature tendencies during the discharge current existence were calculated.展开更多
An analytical research was conducted to study heat transfer from horizontal surfaces to normally impinging circular jets under arbitrary-heat-flux conditions. The laminar thermal and hydraulic boundary layers were div...An analytical research was conducted to study heat transfer from horizontal surfaces to normally impinging circular jets under arbitrary-heat-flux conditions. The laminar thermal and hydraulic boundary layers were divided into five regions of flow. General expressions of heat transfer coefficients were obtained in all the four regions of stagnation and wall jet zones before the hydraulic jump.展开更多
Recently,development of high technology has been required for the formation of uniform thin film in manufacturing processes of semiconductor as the precision instruments become more sophisticated.A method called spin ...Recently,development of high technology has been required for the formation of uniform thin film in manufacturing processes of semiconductor as the precision instruments become more sophisticated.A method called spin coating is often used for spreading photoresist on a wafer surface and drying photoresist film.In spin coating process,photoresist is uniformly spread on the wafer surface by centrifugal force caused by rotating wafer.However,it is a serious concern that streaky lines,which are caused by spiral vortices,appear on the wafer surface and prevent the formation of uniform film in the case of high rotating speed.On the other hand,in the case of low rotating speed,a small hump of the film is formed near the wafer edge.The main purpose of this study is to make clear the drying characteristics of the flowing liquid film on the rotating wafer.Temperature distribution of the flowing liquid film is captured by an infrared thermal video camera and radial gradient of the film temperature is introduced in order to evaluate the drying characteristic of the flowing film under steady state condition.Effects of the flow rate of the liquid film on the film temperature are investigated.The film temperature gradually decreases in the radial direction in all cases.At low rotating speed,the radial gradient of the film temperature is almost constant widely.On the other hand,at high rotating speed,the radial gradient of the film temperature takes a certain maximum value.It is found that the location of the gradient peak corresponds with the transition region of the air boundary layer,in which spiral vortices swirl,and shifts to the inner side of the disk with an increase of the liquid flow rate.展开更多
In this paper the liquid argon nanojet break-up phenomenon was studied using the molecular dynamics method. The effects of temperature, nozzle diameter and body force on the nanojet break-up length and time were simu-...In this paper the liquid argon nanojet break-up phenomenon was studied using the molecular dynamics method. The effects of temperature, nozzle diameter and body force on the nanojet break-up length and time were simu- lated. Meanwhile, the particle size, wave length and the frequency of the disturbance were compared with the re- suits of linear stability analysis. The results showed that even though the fluid becomes discontinuous, the tradi- tional linear stability analysis can be used to make a rough calculation of the nanojet break-up.展开更多
The coupled vibration characteristics of multiple elastic annular baffles of the same inner radius in a partially liquid-filled rigid cylindrical container were studied. The liquid domain was divided into several simp...The coupled vibration characteristics of multiple elastic annular baffles of the same inner radius in a partially liquid-filled rigid cylindrical container were studied. The liquid domain was divided into several simple sub-domains so that the liquid velocity potential in each liquid sub-domain was of class C 1 with continuous boundary conditions. Based on the superposition principle, the general solution of the liquid velocity potential corresponding to each liquid sub-domain was obtained by means of the method of separation of variables. The coupled modes of the multiple elastic annular baffles were expressed in terms of dry-modal functions. The free surface condition, the interface conditions and coupled vibration conditions were expressed in terms of Fourier series along the liquid height and Bessel series in the radial direction, respectively. Stable and fast numerical computations were investigated by the convergence study. Excellent agreements have been achieved in the comparison of re- suits obtained by the proposed approach with those given by the finite element software ADINA. The natural frequencies and mode shapes versus the position, the inner radius and the number of the annular baffles were thoroughly discussed.展开更多
基金Supported by the National Natural Science Foundation of China(21206002,21376016)
文摘The gassed power demand and volumetric mass transfer coefficient (kca) were investigated in a fully baffled, dished-base stirred vessel with a diameter of 0.30 m agitated by five triple-impeller combinations. Six types of impellers (six-half-elliptical-blade disk turbine (HEDT), four-wide-blade hydrofoil impeller (WH) pumping down (D) and pumping up (U), parabolic-blade disk turbine (PDT), and CBY narrow blade (N) and wide blade (W)) were used to form five combinations identified by PDT + 2CBYN, PDT + 2CBYw, PDT + 2WHD, HEDT + 2WHD and HEDT + 2WHo, respectively. The results show that the relative power demand of HEDT + 2WHu is higher than that of other four impeller combinations under all operating conditions. At low superficial gas velocity (uc), kLa differences among impeller combinations are not obvious. However when UG iS high, PDT + 2WHD shows the best mass transfer performance and HEDT + 2WHu shows the worst mass trans- fer performance under all operating conditions. At high uc and a given power input, the impeller combinations with high agitation speed and big projection cross-sectional area lead to relatively high values of kLa. Based on the experimental data, the regressed correlations of gassed power number with Froude number and gas flow number, and kLa with power consumption and superficial gas velocity are obtained for five different impeller combinations, which could be used as guidance for industrial design.
文摘In view of the axial force produced in the working process of double arc helical gear hydraulic pump,the theory of differential equation of curve and curved surface was utilized so that the calculation formula of axial force was obtained and the relationship between the axial force and structure parameters of gears was clarified.In order to balance the axial force,the pressure oil in the high pressure area was introduced into the end face of the plunger to press the plunger against the gear shaft,and the hydrostatic bearing whose type is plunger at the end of the shaft was designed.In order to verify the balance effect of axial force,the leakage owing to end clearance and volume efficiency of gear hydraulic pump before and after the balancing process was analyzed.This paper provides a new analysis idea and balance scheme for the axial force produced in the working process of the double arc helical gear hydraulic pump,which can reduce the leakage owing to end clearance caused by the axial force and improve the volume efficiency of the gear hydraulic pump.
文摘Hydrodynamics of conical fluidized bed differ from that of columnar beds by the fact that a velocity gradient exists along the axial direction of the bed.The gas–liquid–solid fluidized bed has emerged in recent years as one of the most promising devices for three-phase operations.Such a device is of considerable industrial importance as evident from its wide applications in chemical,refining,petrochemical,biochemical processing,pharmaceutical and food industries.To explore this,a series of experiments have been carried out for homogeneous well-mixed ternary mixtures of dolomite of varying compositions in a three-phase conical fluidized bed.The hydrodynamic characteristics determined included the bed pressure drop,bed fluctuation and bed expansion ratios.The single and combined effects of operating parameters such as superficial gas velocity,superficial liquid velocity,initial static bed height,average particle size and cone angle on the responses have been analyzed using response surface methodology(RSM).A 25 full factorial central composite experimental design has been employed.Analysis of variance(ANOVA) showed a high coefficient of determination value and satisfactory prediction second-order regression models have been derived.Experimental values of bed pressure drop,bed fluctuation and bed expansion ratios have been found to agree well with the developed correlations.
文摘Aim To analyze the secondary structure and neurotrophic effect of a specific protein in sensory neurons. Methods Comparison of the proteins expressed in the rat spinal sensory neurons and motor neurons was made by two dimensional electrophoresis. One specific protein in sensory neurons was isolated and purified by DEAE Sephacel ion exchange chromatography and high performance liquid chromatography. A primary analysis of its secondary structure by circular dichroism, and its neurotrophic effects were investigated using the model of dorsal root ganglia(DRG) cultured in vitro . Results The molecular weight and isoelectric point of the protein were 33 1 kDa and 5 52, respectively. Its circular dichroism showed that there were 20 8% α helix, 54 8% β sheet, 7 3% turn, and 17 1% random coil in its secondary structure. Biological experiments showed that the protein could promote the neurite outgrowth of DRG. Conclusion A specific protein in spinal sensory tissue with molecular weight of 33 1 kDa has been purified. There is mainly β sheet in the secondary structure of the protein. And the protein has neurotrophic effects in the model of DRG.
基金the support from the National Natural Science Foundation of China(Nos.11372188,and 51490674)the National Basic Research Program of China(973 Program)(No.2015CB251203)
文摘The flow past a primary cylinder with one tandem control rod and one staggered control rod is simulated in this paper through solving the Navier-Stokes equations. Two examples are simulated to validate the model, and the results matched well with those of previous researches. The Reynolds number based on the diameter of the primary cylinder is 500. The diameter ratio between the control rod and the primary cylinder (d/D) is 0.25. It was found that the effect of the combination of one upstream tandem control rod and one staggered control rod on the hydrodynamics of the primary cylinder is a linear superposition of the effect of a corresponding single control rod, and the effect of the upstream tandem control rod is dominant at larger spacing ratios such as G/D=2. For the combination of a downstream tandem control rod and a staggered control rod, the effect of the control rods is different from that of the corresponding single control rod in the region of 0.2〈G/D〈0.5 & 30°〈a〈120° and 0.9〈G/D〈1.4 & 30°〈a〈50°, where the additional effect is obvious. In this case, the effect of the downstream tandem control rod is dominant at small spacing ratios (such as G/D=0.1). At moderate spacing ratios such as G/D=0.4, the effects of the tandem control rod and the staggered control rod are comparable in both cases.
基金supported by New Product Development of Small and Medium Business Administration(SMBA)funded by the Ministry of Education,Science and Technology (No. 2011-0021376) through the Basic Science Program of the National Research Foundation of Korea(NRF)
文摘The flow pattern behaviour of falling liquid film over three horizontal cylinders was evaluated.These flows can take three forms:discrete droplets,individual jets,and continuous sheet,and special attention is paid to the effects of the physical properties and geometrical parameters of the first two forms(droplets and jets) because these forms are more important in heat-transfer behaviour and less research has been published for these forms,The flow modes and experimental results were successfully compared with previous experimental literatures,and also the effects of liquid flow rate,tube diameter,and tube spacing on departure site spacing,in both drop and jet modes,were evaluated in the low Galileo number and high viscosity fluid(cooking oil),to help developing criteria for determining falling film modes and their transitions,and to understand the heat transfer characteristics associated with each mode.
基金Supported by the National Natural Science Foundation of China(21376229)the Excellent Innovation Projects of Postgraduates of Shanxi Province(20103084)the Science and Technology Innovation Projects of Shanxi Province Colleges and Universities(2013128)
文摘A new electrochemical reactor with rotating cylindrical electrodes was designed and used to increase the regeneration efficiency of chelated iron desulfurization solution.The influence of operating parameters,such as the rotation speed of electrode,voltage,and inlet air and liquid flow rates,on the regeneration rate was investigated.Compared with the traditional tank-type reactor,the regeneration rate with the new electrochemical reactor was increased significantly.Under the optimum conditions,the regeneration rate was increased from 45.3%to 84.8%.Experimental results of continuous operation indicated that the new electrochemical regeneration method had some merits including higher regeneration efficiency,smaller equipment size and good stability in operation.
文摘This research investigates the possibility of convergent acoustic waves generation in the liquid by means of the sotmd waves reflection from the solid cylindrical surface, emerged in the pulsed electric discharge. The spectra of pulse discharge plasma emission in the water and in the air-water mixture were obtained. The temperature of cuprum and oxygen atoms electronic excitation levels and the temperature tendencies during the discharge current existence were calculated.
文摘An analytical research was conducted to study heat transfer from horizontal surfaces to normally impinging circular jets under arbitrary-heat-flux conditions. The laminar thermal and hydraulic boundary layers were divided into five regions of flow. General expressions of heat transfer coefficients were obtained in all the four regions of stagnation and wall jet zones before the hydraulic jump.
文摘Recently,development of high technology has been required for the formation of uniform thin film in manufacturing processes of semiconductor as the precision instruments become more sophisticated.A method called spin coating is often used for spreading photoresist on a wafer surface and drying photoresist film.In spin coating process,photoresist is uniformly spread on the wafer surface by centrifugal force caused by rotating wafer.However,it is a serious concern that streaky lines,which are caused by spiral vortices,appear on the wafer surface and prevent the formation of uniform film in the case of high rotating speed.On the other hand,in the case of low rotating speed,a small hump of the film is formed near the wafer edge.The main purpose of this study is to make clear the drying characteristics of the flowing liquid film on the rotating wafer.Temperature distribution of the flowing liquid film is captured by an infrared thermal video camera and radial gradient of the film temperature is introduced in order to evaluate the drying characteristic of the flowing film under steady state condition.Effects of the flow rate of the liquid film on the film temperature are investigated.The film temperature gradually decreases in the radial direction in all cases.At low rotating speed,the radial gradient of the film temperature is almost constant widely.On the other hand,at high rotating speed,the radial gradient of the film temperature takes a certain maximum value.It is found that the location of the gradient peak corresponds with the transition region of the air boundary layer,in which spiral vortices swirl,and shifts to the inner side of the disk with an increase of the liquid flow rate.
文摘In this paper the liquid argon nanojet break-up phenomenon was studied using the molecular dynamics method. The effects of temperature, nozzle diameter and body force on the nanojet break-up length and time were simu- lated. Meanwhile, the particle size, wave length and the frequency of the disturbance were compared with the re- suits of linear stability analysis. The results showed that even though the fluid becomes discontinuous, the tradi- tional linear stability analysis can be used to make a rough calculation of the nanojet break-up.
基金supported by the National Natural Science Foundation of China (Grant No. 11172123)
文摘The coupled vibration characteristics of multiple elastic annular baffles of the same inner radius in a partially liquid-filled rigid cylindrical container were studied. The liquid domain was divided into several simple sub-domains so that the liquid velocity potential in each liquid sub-domain was of class C 1 with continuous boundary conditions. Based on the superposition principle, the general solution of the liquid velocity potential corresponding to each liquid sub-domain was obtained by means of the method of separation of variables. The coupled modes of the multiple elastic annular baffles were expressed in terms of dry-modal functions. The free surface condition, the interface conditions and coupled vibration conditions were expressed in terms of Fourier series along the liquid height and Bessel series in the radial direction, respectively. Stable and fast numerical computations were investigated by the convergence study. Excellent agreements have been achieved in the comparison of re- suits obtained by the proposed approach with those given by the finite element software ADINA. The natural frequencies and mode shapes versus the position, the inner radius and the number of the annular baffles were thoroughly discussed.