In this study,thermo-fluid characteristics of elliptical annular finned tube heat exchanger were numerically studied in detail.Transition SST model was utilized to simulate turbulent flow.Effects of air velocities,hor...In this study,thermo-fluid characteristics of elliptical annular finned tube heat exchanger were numerically studied in detail.Transition SST model was utilized to simulate turbulent flow.Effects of air velocities,horizontal to vertical fin diameter ratios,and fin densities were examined in detail.The simulations indicate superior performance of elliptical fin layout.It was shown that pressure drop of annular elliptical fin can be only one half of that of a circular annular fin while containing comparable heat transfer performance.The vertical elliptical annular fin may even contain a higher heat transfer performance over circular fin.Correlations are proposed to estimate the Nu number and pressure drop based on the annular circular fin.The maximum deviations between the proposed correlations and simulations regarding pressure drop and heat transfer coefficient are 5.6%and 3.2%,respectively.For further elaboration of the superiority of the elliptical layout from the second law perspective,normalized entropy generation was also studied.In all cases,the entropy generation rate in circular fin was higher than that of an elliptical fin.展开更多
Previous soil-disc force prediction models have considered spherical and concave blades, as used on disc ploughs and harrows, with many simplifying assumptions. This study proposes an approach applying the fundamental...Previous soil-disc force prediction models have considered spherical and concave blades, as used on disc ploughs and harrows, with many simplifying assumptions. This study proposes an approach applying the fundamental equation of earth moving mechanics for calculating the soil passive reaction acting on a rotating fiat disc blade as used on a zero-till single disc seeder. The study considers the effects of disc variable depth of cut, sweep and tilt angles, free rotation and a scrubbing reaction at the beveled edge. This paper outlines the modeling approach and prediction results for a fixed circular blade operating at 90° sweep angle over a range of speeds and at two tilt angles. To account for the varying depth across the circular disc shape width, elemental wide blade force reactions acting on wide blade segments of elemental width were integrated across the disc working width. By including inertia forces due to speed as well as additional bulldozing forces due to the loose soil accumulation in front of the blade the draught and upward vertical forces acting on the vertical disc blade were predicted with a deviation of 6%-19% and 1.5%-14% from measured data, respectively. The model was able to predict the effect of increasing the tilt angle from 0° to 20° on reducing both draught and upward vertical forces. Further development and validation of the model will be described in subsequent papers, reflecting a step by step approach of increasing complexity to model a disc blade as used on a zero-till single disc seeding system.展开更多
The unsteady phenomena in the transonic flow around airfoils are observed in the flow field of fan, compressor blades and butterfly valves, and this often causes serious problems such as the aeroacoustic noise, the vi...The unsteady phenomena in the transonic flow around airfoils are observed in the flow field of fan, compressor blades and butterfly valves, and this often causes serious problems such as the aeroacoustic noise, the vibration. In the transonic or supersonic flow where vapour is contained in the main flow, the rapid expansion of the flow may give rise to a non-equilibrium condensation. However, the effect of non-equilibrium condensation on the transonic internal flows around the airfoil has not yet been clarified satisfactorily. In the present study, the effect of non-equilibrium condensation of moist air on the self-excited shock wave oscillation on a circular arc blade was investigated numerically. The results showed that in the case with non-equilibrium condensation, frequencies of the flow oscillation became smaller than those without the non-equilibrium condensation.展开更多
文摘In this study,thermo-fluid characteristics of elliptical annular finned tube heat exchanger were numerically studied in detail.Transition SST model was utilized to simulate turbulent flow.Effects of air velocities,horizontal to vertical fin diameter ratios,and fin densities were examined in detail.The simulations indicate superior performance of elliptical fin layout.It was shown that pressure drop of annular elliptical fin can be only one half of that of a circular annular fin while containing comparable heat transfer performance.The vertical elliptical annular fin may even contain a higher heat transfer performance over circular fin.Correlations are proposed to estimate the Nu number and pressure drop based on the annular circular fin.The maximum deviations between the proposed correlations and simulations regarding pressure drop and heat transfer coefficient are 5.6%and 3.2%,respectively.For further elaboration of the superiority of the elliptical layout from the second law perspective,normalized entropy generation was also studied.In all cases,the entropy generation rate in circular fin was higher than that of an elliptical fin.
文摘Previous soil-disc force prediction models have considered spherical and concave blades, as used on disc ploughs and harrows, with many simplifying assumptions. This study proposes an approach applying the fundamental equation of earth moving mechanics for calculating the soil passive reaction acting on a rotating fiat disc blade as used on a zero-till single disc seeder. The study considers the effects of disc variable depth of cut, sweep and tilt angles, free rotation and a scrubbing reaction at the beveled edge. This paper outlines the modeling approach and prediction results for a fixed circular blade operating at 90° sweep angle over a range of speeds and at two tilt angles. To account for the varying depth across the circular disc shape width, elemental wide blade force reactions acting on wide blade segments of elemental width were integrated across the disc working width. By including inertia forces due to speed as well as additional bulldozing forces due to the loose soil accumulation in front of the blade the draught and upward vertical forces acting on the vertical disc blade were predicted with a deviation of 6%-19% and 1.5%-14% from measured data, respectively. The model was able to predict the effect of increasing the tilt angle from 0° to 20° on reducing both draught and upward vertical forces. Further development and validation of the model will be described in subsequent papers, reflecting a step by step approach of increasing complexity to model a disc blade as used on a zero-till single disc seeding system.
文摘The unsteady phenomena in the transonic flow around airfoils are observed in the flow field of fan, compressor blades and butterfly valves, and this often causes serious problems such as the aeroacoustic noise, the vibration. In the transonic or supersonic flow where vapour is contained in the main flow, the rapid expansion of the flow may give rise to a non-equilibrium condensation. However, the effect of non-equilibrium condensation on the transonic internal flows around the airfoil has not yet been clarified satisfactorily. In the present study, the effect of non-equilibrium condensation of moist air on the self-excited shock wave oscillation on a circular arc blade was investigated numerically. The results showed that in the case with non-equilibrium condensation, frequencies of the flow oscillation became smaller than those without the non-equilibrium condensation.