In this paper, we consider the problem (θ(x,U))_t=(K(x,U)U_x)_x-(K(x,U))_x (x,t)∈G_T (θ(x,U)V(x,t))_t=(DθV_x)_x+(V(KU_x-K))_x,(x,t)∈G_T, u(x,0)=u_0(x),V(x,0),(x,0)=V_0(x),0≤x≤2, U(0,t)=h_0(t),U(2,t)=h_2(t),0≤t...In this paper, we consider the problem (θ(x,U))_t=(K(x,U)U_x)_x-(K(x,U))_x (x,t)∈G_T (θ(x,U)V(x,t))_t=(DθV_x)_x+(V(KU_x-K))_x,(x,t)∈G_T, u(x,0)=u_0(x),V(x,0),(x,0)=V_0(x),0≤x≤2, U(0,t)=h_0(t),U(2,t)=h_2(t),0≤t≤T, V(0,t)=g_0(t),V(2,t)=g_2(t),0≤t≤T. Where, θ(x,U)=θ_1(x,U) when (x,t)∈D_1={0≤x<1,0≤t≤T};θ(x,U)=θ_2(x,U),(x,t)∈D_2={1<x≤2,0≤t≤T}.K(x,U)=K_i(x,U),(x,t)∈D_i. θ_i, K_i are the Moisture content and hy draulic conductivity of porous Media on D_i respectively. V be the the concentration of solute in the fluid. In addition we also require that U, V, (K(x,U)U_x-1) and DθV_x+V(KU_x-K) are continu ous at x=1. We prove the exisence, uniqueness and large time behavior of the problem by the method of reg ularization.展开更多
The relation between composition operators on the Dirichlet spaces in the open unit disk and derivative weighted composition operators on the Bergman spaces in the open unit disk is investigated firstly,and for a comb...The relation between composition operators on the Dirichlet spaces in the open unit disk and derivative weighted composition operators on the Bergman spaces in the open unit disk is investigated firstly,and for a combination of several derivative weighted composition operators which acts on classic Bergman space,the lower bound of its essential norm is estimated in terms of the boundary data of the symbols of d-composition operators.Some similar results about composition operators on the Dirichlet space are also presented.A necessary condition is given to determine the compactness of the combination of several derivative weighted composition operators on Bergman spaces.展开更多
文摘In this paper, we consider the problem (θ(x,U))_t=(K(x,U)U_x)_x-(K(x,U))_x (x,t)∈G_T (θ(x,U)V(x,t))_t=(DθV_x)_x+(V(KU_x-K))_x,(x,t)∈G_T, u(x,0)=u_0(x),V(x,0),(x,0)=V_0(x),0≤x≤2, U(0,t)=h_0(t),U(2,t)=h_2(t),0≤t≤T, V(0,t)=g_0(t),V(2,t)=g_2(t),0≤t≤T. Where, θ(x,U)=θ_1(x,U) when (x,t)∈D_1={0≤x<1,0≤t≤T};θ(x,U)=θ_2(x,U),(x,t)∈D_2={1<x≤2,0≤t≤T}.K(x,U)=K_i(x,U),(x,t)∈D_i. θ_i, K_i are the Moisture content and hy draulic conductivity of porous Media on D_i respectively. V be the the concentration of solute in the fluid. In addition we also require that U, V, (K(x,U)U_x-1) and DθV_x+V(KU_x-K) are continu ous at x=1. We prove the exisence, uniqueness and large time behavior of the problem by the method of reg ularization.
基金Supported by National Natural Science Foundation of China (No. 10971153 and No. 10671141)
文摘The relation between composition operators on the Dirichlet spaces in the open unit disk and derivative weighted composition operators on the Bergman spaces in the open unit disk is investigated firstly,and for a combination of several derivative weighted composition operators which acts on classic Bergman space,the lower bound of its essential norm is estimated in terms of the boundary data of the symbols of d-composition operators.Some similar results about composition operators on the Dirichlet space are also presented.A necessary condition is given to determine the compactness of the combination of several derivative weighted composition operators on Bergman spaces.