The optimal design method for an open Magnetic Resonance Imaging (MRI) superconducting magnet with an active shielding configuration is proposed. Firstly, three pairs of current rings are employed as seed coils. By ...The optimal design method for an open Magnetic Resonance Imaging (MRI) superconducting magnet with an active shielding configuration is proposed. Firstly, three pairs of current rings are employed as seed coils. By optimizing the homogeneity of Diameter Sphere Voltnne (DSV), the positions and currents of the seed coils will be obtained. Secondly, according to the positions and currents of the seed coils, the current density of superconducting wires is determined, and then the original sections for the coils can be achieved. An optimization for the homogeneity based on the constrained nonlincar optimization method is employed to determine the coils with good homogeneity. Thirdly, the magnetic field generated by previous coils is set as the background field, then add two coils with reverse current, and optimize the stray field line of 5 Gauss in a certain scope. Finally, a further optimization for the homogeneity is used to get Final coils. This method can also be used in the design of other axisynmaetfic superconducting MRI magnets.展开更多
In the knitting industry the measurements of the stitch density and the stitch length are usually done manually, which may lead to lower efficiency and less definition and also bring subjective ideas into the test res...In the knitting industry the measurements of the stitch density and the stitch length are usually done manually, which may lead to lower efficiency and less definition and also bring subjective ideas into the test results. In order to improve the effect we can measure with Digital Image Processing Techniques. A piece of sample is scanned into computer and changed into a digital image, which is processed with media filtering. To acquire the power spectrum, the image in the spatial domain is converted into the frequency domain. Picking up the characteristic points describing the stitch density and the stitch length separately in the power spectra and reconstructing them, the values of the stitch density and the stitch length could be calculated. When measuring the stitch length, we should establish a geometric model of the stitch based en the digital image processing, which provides a method to transform the stitch length in the two-dimensien space into the three-dimensien space and to measure the value of the stitch length more accurately. This method also provides a new way to measure the stitch length without damaging the fabric.展开更多
基金supported by the National Natural Science Foundation of China(No.50577063)
文摘The optimal design method for an open Magnetic Resonance Imaging (MRI) superconducting magnet with an active shielding configuration is proposed. Firstly, three pairs of current rings are employed as seed coils. By optimizing the homogeneity of Diameter Sphere Voltnne (DSV), the positions and currents of the seed coils will be obtained. Secondly, according to the positions and currents of the seed coils, the current density of superconducting wires is determined, and then the original sections for the coils can be achieved. An optimization for the homogeneity based on the constrained nonlincar optimization method is employed to determine the coils with good homogeneity. Thirdly, the magnetic field generated by previous coils is set as the background field, then add two coils with reverse current, and optimize the stray field line of 5 Gauss in a certain scope. Finally, a further optimization for the homogeneity is used to get Final coils. This method can also be used in the design of other axisynmaetfic superconducting MRI magnets.
文摘In the knitting industry the measurements of the stitch density and the stitch length are usually done manually, which may lead to lower efficiency and less definition and also bring subjective ideas into the test results. In order to improve the effect we can measure with Digital Image Processing Techniques. A piece of sample is scanned into computer and changed into a digital image, which is processed with media filtering. To acquire the power spectrum, the image in the spatial domain is converted into the frequency domain. Picking up the characteristic points describing the stitch density and the stitch length separately in the power spectra and reconstructing them, the values of the stitch density and the stitch length could be calculated. When measuring the stitch length, we should establish a geometric model of the stitch based en the digital image processing, which provides a method to transform the stitch length in the two-dimensien space into the three-dimensien space and to measure the value of the stitch length more accurately. This method also provides a new way to measure the stitch length without damaging the fabric.