一个边割被称为圈边割,如果该边割能分离图的两个不同圈.如果一个图有圈边割,称该图为圈边可分离的.一个圈边可分离图G的最小圈边割的阶数被称为圈边连通度,记作cλ(G).定义:ζ(G)=min{w(X)|X导出G的最短圈},其中w(X)为端点分别在X和V(G...一个边割被称为圈边割,如果该边割能分离图的两个不同圈.如果一个图有圈边割,称该图为圈边可分离的.一个圈边可分离图G的最小圈边割的阶数被称为圈边连通度,记作cλ(G).定义:ζ(G)=min{w(X)|X导出G的最短圈},其中w(X)为端点分别在X和V(G)-X中的边的数目.如果一个圈边可分离图G使得cλ(G)=ζ(G)成立,称该图是圈边最优的.Tian和Meng在文章[11]以及Yang et al在文章[15]中研究了两种不同的双轨道图的圈边最优性.本文我们将研究具有两个同阶轨道的双轨道图的圈边连通度.展开更多
文摘一个边割被称为圈边割,如果该边割能分离图的两个不同圈.如果一个图有圈边割,称该图为圈边可分离的.一个圈边可分离图G的最小圈边割的阶数被称为圈边连通度,记作cλ(G).定义:ζ(G)=min{w(X)|X导出G的最短圈},其中w(X)为端点分别在X和V(G)-X中的边的数目.如果一个圈边可分离图G使得cλ(G)=ζ(G)成立,称该图是圈边最优的.Tian和Meng在文章[11]以及Yang et al在文章[15]中研究了两种不同的双轨道图的圈边最优性.本文我们将研究具有两个同阶轨道的双轨道图的圈边连通度.
基金supported by NSFC(10971255)the Key Project of Chinese Ministry of Education(208161)the Program for New Century Excellent Talents in University,and The Project-sponsored by SRF for ROCS,SEM