In a soft clay layer overlain by a thick man made ground layer, as in the case of the Unkapam shores of the Golden Horn, excess pore pressures have remained for long periods and the soft clay layer has hardly undergon...In a soft clay layer overlain by a thick man made ground layer, as in the case of the Unkapam shores of the Golden Horn, excess pore pressures have remained for long periods and the soft clay layer has hardly undergone few volumetric deformations. Along the shores of the Golden Horn such creep of the soil towards the sea has been detected at more than 40 mm in the last 26 months. The measurements of those movements are examined in this paper. Our research points out that the local failure of a soil element or of a particular layer differs from the general failure of the soil mass. Furthermore, the large masses of unfailed soil which overlie the soft layer along the shores of the Golden Horn delay the general failure of the slopes. We conclude that the shear strains producing excessive pore pressures is the cause of the creep observed. Because a proper solution still need to be found for a sustainable stability of the area, it is necessary to continue with the measurements of the Golden Horn's creeping shores.展开更多
The influence of Y content on the grain-scale twinning behavior in extruded Mg−xY(x=0.5,1,5,wt.%)sheets under uniaxial tension and compression along the extruded direction was statistically investigated.An automatic t...The influence of Y content on the grain-scale twinning behavior in extruded Mg−xY(x=0.5,1,5,wt.%)sheets under uniaxial tension and compression along the extruded direction was statistically investigated.An automatic twin variant analysis was employed,based on large data sets obtained by electron backscatter diffraction(EBSD),including 2691 grains with 977 twins.The{1012}tension twinning(TTW)dominance and prevailing anomalous twinning behavior(Schmid factor(m)<0)under both tension and compression were found.The anomalous twinning behavior was more pronounced as Y content increased under tensile loading,indicating a promoted stochasticity of twin variant selection for more concentrated Mg−Y alloys.However,the trend for the Y-content dependent anomalous twinning behavior was opposite in compression.The fractions of the anomalous TTWs were found to be well correlated with the maximum Schmid factor(m_(max))values of basal slip and prismatic slip in the corresponding parent grains for compression and tension,respectively,indicating that twinning and dislocation slip might be closely related in the present Mg−Y alloys.展开更多
文摘In a soft clay layer overlain by a thick man made ground layer, as in the case of the Unkapam shores of the Golden Horn, excess pore pressures have remained for long periods and the soft clay layer has hardly undergone few volumetric deformations. Along the shores of the Golden Horn such creep of the soil towards the sea has been detected at more than 40 mm in the last 26 months. The measurements of those movements are examined in this paper. Our research points out that the local failure of a soil element or of a particular layer differs from the general failure of the soil mass. Furthermore, the large masses of unfailed soil which overlie the soft layer along the shores of the Golden Horn delay the general failure of the slopes. We conclude that the shear strains producing excessive pore pressures is the cause of the creep observed. Because a proper solution still need to be found for a sustainable stability of the area, it is necessary to continue with the measurements of the Golden Horn's creeping shores.
基金the National Natural Science Foundation of China(Nos.51401172 and 51601003)Fundamental Research Funds for the Central Universities,China(No.2682020ZT114)open funding of International Joint Laboratory for Light Alloys(MOE),Chongqing University,China。
文摘The influence of Y content on the grain-scale twinning behavior in extruded Mg−xY(x=0.5,1,5,wt.%)sheets under uniaxial tension and compression along the extruded direction was statistically investigated.An automatic twin variant analysis was employed,based on large data sets obtained by electron backscatter diffraction(EBSD),including 2691 grains with 977 twins.The{1012}tension twinning(TTW)dominance and prevailing anomalous twinning behavior(Schmid factor(m)<0)under both tension and compression were found.The anomalous twinning behavior was more pronounced as Y content increased under tensile loading,indicating a promoted stochasticity of twin variant selection for more concentrated Mg−Y alloys.However,the trend for the Y-content dependent anomalous twinning behavior was opposite in compression.The fractions of the anomalous TTWs were found to be well correlated with the maximum Schmid factor(m_(max))values of basal slip and prismatic slip in the corresponding parent grains for compression and tension,respectively,indicating that twinning and dislocation slip might be closely related in the present Mg−Y alloys.