A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient r...A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient regimes, a control, chemical fertilizers only (CF), chemical fertilizers with swine manure (SM), and chemical fertilizers with wheat straw (WS), and two soil moisture regimes, continuous waterlogging (CWL) and alternate wetting and drying (AWD), were investigated. With SM and WS total organic carbon and total nitrogen in the paddy soil were significantly higher (P < 0.05) than those with CF. A similar effect for organic amendments was observed in the soil light fraction organic C (LFOC), water-soluble carbohydrates (WSC), and water-soluble organic C (WSOC). CWL, in particular when swine manure was incorporated into the paddy soil, markedly decreased soil redox potential (Eh) and increased total active reducing substances (ARS). Meanwhile, as compared to CF, SM and WS significantly (P < 0.05) increased soil microbial biomass C (MBC) and mineralizable carbon, with differences in AWD being higher than CWL. In addition, SM and WS treatments significantly (P < 0.05) improved rice above-ground biomass and grain yield, with AWD being greater than CWL. Thus, for ecologically sustainable agricultural management of paddy soils, long-term waterlogging should be avoided when organic manure was incorporated into paddy soil.展开更多
Typical failure types of slopes of expansive soils are divided to two kinds: slip in surface layer and slip in shallow layer. Based on total strength law of expansive soils, the relationship between its water content...Typical failure types of slopes of expansive soils are divided to two kinds: slip in surface layer and slip in shallow layer. Based on total strength law of expansive soils, the relationship between its water content and shear strength inculding cohesion and friction angle, was studied in detail. Acoording to change of water content and depth effect during rainfall, distribution of shear strength in slopes of expansive soils was analyzed. Finally, with a slope of expansive soils in Nanning city of Guangxi Autonomous Region of China as a case, safety factor and slip surface was studied.展开更多
Soil aggregate stability,an important index of the physical characteristics of a soil,can provide a good indication of a soil’s erodibility,and deserves special consideration in regions with cold climate.The objectiv...Soil aggregate stability,an important index of the physical characteristics of a soil,can provide a good indication of a soil’s erodibility,and deserves special consideration in regions with cold climate.The objective of this study was to study the effect of freeze-thaw on soil water-stable aggregates in the black soil region of Northeast China.Samples of a typical black soil in the region were collected to measure water-stable aggregates after freeze-thaw under different conditions(i.e.,initial moisture contents,freezethaw cycles and freezing temperatures)by wet-sieving into eight particle size groups(>10,10–6,6–5,5–3,3–2,2–1,1–0.5,and0.5–0.25 mm).Freeze-thaw had the most effect on aggregate stability when the samples had an initial moisture content of 400 g kg-1.The water-stable aggregates of the four larger particle size groups(>5,5–3,3–2,and 2–1 mm)reached a peak stability value,but those of the two smaller particle size groups(1–0.5 and 0.5–0.25 mm)reached a minimum value when the soil moisture content was 400 g kg-1.Water-stable aggregates of the four larger particle size groups decreased while those of the two smaller particle size groups increased with the increase of freeze-thaw cycles.As temperatures fell,the water-stable aggregates of the four larger particle size groups decreased while those of the two smaller particle size groups increased.展开更多
基金1Project supported by the Knowledge Innovative Program of the Chinese Academy of Sciences (No. KZCX2-413) andthe National High Technology Research and Development Program of China (863 Program) (No. 2002AA601012).
文摘A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient regimes, a control, chemical fertilizers only (CF), chemical fertilizers with swine manure (SM), and chemical fertilizers with wheat straw (WS), and two soil moisture regimes, continuous waterlogging (CWL) and alternate wetting and drying (AWD), were investigated. With SM and WS total organic carbon and total nitrogen in the paddy soil were significantly higher (P < 0.05) than those with CF. A similar effect for organic amendments was observed in the soil light fraction organic C (LFOC), water-soluble carbohydrates (WSC), and water-soluble organic C (WSOC). CWL, in particular when swine manure was incorporated into the paddy soil, markedly decreased soil redox potential (Eh) and increased total active reducing substances (ARS). Meanwhile, as compared to CF, SM and WS significantly (P < 0.05) increased soil microbial biomass C (MBC) and mineralizable carbon, with differences in AWD being higher than CWL. In addition, SM and WS treatments significantly (P < 0.05) improved rice above-ground biomass and grain yield, with AWD being greater than CWL. Thus, for ecologically sustainable agricultural management of paddy soils, long-term waterlogging should be avoided when organic manure was incorporated into paddy soil.
文摘Typical failure types of slopes of expansive soils are divided to two kinds: slip in surface layer and slip in shallow layer. Based on total strength law of expansive soils, the relationship between its water content and shear strength inculding cohesion and friction angle, was studied in detail. Acoording to change of water content and depth effect during rainfall, distribution of shear strength in slopes of expansive soils was analyzed. Finally, with a slope of expansive soils in Nanning city of Guangxi Autonomous Region of China as a case, safety factor and slip surface was studied.
基金Supported by the National Natural Science Foundation of China(Nos.41071183 and 40601054)
文摘Soil aggregate stability,an important index of the physical characteristics of a soil,can provide a good indication of a soil’s erodibility,and deserves special consideration in regions with cold climate.The objective of this study was to study the effect of freeze-thaw on soil water-stable aggregates in the black soil region of Northeast China.Samples of a typical black soil in the region were collected to measure water-stable aggregates after freeze-thaw under different conditions(i.e.,initial moisture contents,freezethaw cycles and freezing temperatures)by wet-sieving into eight particle size groups(>10,10–6,6–5,5–3,3–2,2–1,1–0.5,and0.5–0.25 mm).Freeze-thaw had the most effect on aggregate stability when the samples had an initial moisture content of 400 g kg-1.The water-stable aggregates of the four larger particle size groups(>5,5–3,3–2,and 2–1 mm)reached a peak stability value,but those of the two smaller particle size groups(1–0.5 and 0.5–0.25 mm)reached a minimum value when the soil moisture content was 400 g kg-1.Water-stable aggregates of the four larger particle size groups decreased while those of the two smaller particle size groups increased with the increase of freeze-thaw cycles.As temperatures fell,the water-stable aggregates of the four larger particle size groups decreased while those of the two smaller particle size groups increased.