Kuwait is located in hyper arid desert environment. This geographical location and irrational human activities accelerate the expansion of land degradation problem. In order to rehabilitate the degraded areas it is ne...Kuwait is located in hyper arid desert environment. This geographical location and irrational human activities accelerate the expansion of land degradation problem. In order to rehabilitate the degraded areas it is necessary to use soil and water resources in sustainable manner. Owing to these reasons it is essential to use appropriate methods based on the scientific diagnostics of the problem. It is compulsory to identify, specify and test different efficient, cost-effective and environment friendly sound sustainable sand control measures such as, semi-circular bunds, square micro catchment and checker board palm leaves to rehabilitate degraded lands in Liyah refilled quarries. To evaluate the impact of rehabilitation method through mulching with date palm leaves soil samples were collected (control and rehabilitation sites with square micro catchment) prior to the implementation plan and post completion of the project (three years). In this study will be highlighted on detail the results of using square micro catchment and with short brief descriptions on other water harvesting techniques. The results showed an improvement of physical soil properties after the application of these techniques. Soil fertility increased through increasing the quantity of fine and very fine sand. The soil moisture at the surface soil increased from 0.085% to 1.62% after the treatment. The untreated soil has high bulk density about 2 g/cm3 and low porosity about 27%. However, after the soil was ploughed and mulched the bulk density decreased to 0.03 g/cm3. And porosity improved 98%. This study conserved the irrigation water through reducing the proportion of soil evaporation, in addition to the creation of optimum condition for plant growth. The aim of this study was to analyze the effect of using organic mulch date palm leaves with water harvesting techniques on the physical and biological properties of degraded soil in Liyah area.展开更多
HDS-SPAC,a new soil-plant-atmosphere continuum(SPAC) model,is developed for simulating water and heat transfer in SPAC.The model adopts a recently proposed hybrid dual source approach for soil evaporation and plant tr...HDS-SPAC,a new soil-plant-atmosphere continuum(SPAC) model,is developed for simulating water and heat transfer in SPAC.The model adopts a recently proposed hybrid dual source approach for soil evaporation and plant transpiration partitioning.For the above-ground part,a layer approach is used to partition available energy and calculate aerodynamic resistances,while a patch approach is used to derive sensible heat and latent heat fluxes from the two sources(soil and vegetation).For the below-ground part,soil water and heat dynamics are described by the mixed form of Richards equation,and the soil heat conductivity equation,respectively.These two parts are coupled through ground heat flux for energy transfer,root-zone water potential-dependent stomatal resistance,and surface soil water potential-dependent evaporation for water transfer.Evaporation is calculated from the water potential gradient at soil-atmosphere interface and aerodynamic resistance,and transpiration is determined using a Jarvis-type function linking soil water availability and atmospheric conditions.Some other processes,such as canopy interception and deep percolation,are also considered in the HDS-SPAC model.The hybrid dual-source approach allows HDS-SPAC to simulate heat and water transfer in an ecosystem with a large range of vegetation cover change temporally or spatially.The model was tested with observations at a wheat field in North China Plain over a time of three months covering both wet and dry conditions.The fractional crop covers change from 30% to over 90%.The results indicated that the HDS-SPAC model can estimate actual evaporation and transpiration partitioning and soil water content and temperature over the whole range of tested vegetation coverage.展开更多
文摘Kuwait is located in hyper arid desert environment. This geographical location and irrational human activities accelerate the expansion of land degradation problem. In order to rehabilitate the degraded areas it is necessary to use soil and water resources in sustainable manner. Owing to these reasons it is essential to use appropriate methods based on the scientific diagnostics of the problem. It is compulsory to identify, specify and test different efficient, cost-effective and environment friendly sound sustainable sand control measures such as, semi-circular bunds, square micro catchment and checker board palm leaves to rehabilitate degraded lands in Liyah refilled quarries. To evaluate the impact of rehabilitation method through mulching with date palm leaves soil samples were collected (control and rehabilitation sites with square micro catchment) prior to the implementation plan and post completion of the project (three years). In this study will be highlighted on detail the results of using square micro catchment and with short brief descriptions on other water harvesting techniques. The results showed an improvement of physical soil properties after the application of these techniques. Soil fertility increased through increasing the quantity of fine and very fine sand. The soil moisture at the surface soil increased from 0.085% to 1.62% after the treatment. The untreated soil has high bulk density about 2 g/cm3 and low porosity about 27%. However, after the soil was ploughed and mulched the bulk density decreased to 0.03 g/cm3. And porosity improved 98%. This study conserved the irrigation water through reducing the proportion of soil evaporation, in addition to the creation of optimum condition for plant growth. The aim of this study was to analyze the effect of using organic mulch date palm leaves with water harvesting techniques on the physical and biological properties of degraded soil in Liyah area.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50879041 and 50939004)the National Hi-Tech Research and Development Program of China (Grant No.2011BAD25B05)
文摘HDS-SPAC,a new soil-plant-atmosphere continuum(SPAC) model,is developed for simulating water and heat transfer in SPAC.The model adopts a recently proposed hybrid dual source approach for soil evaporation and plant transpiration partitioning.For the above-ground part,a layer approach is used to partition available energy and calculate aerodynamic resistances,while a patch approach is used to derive sensible heat and latent heat fluxes from the two sources(soil and vegetation).For the below-ground part,soil water and heat dynamics are described by the mixed form of Richards equation,and the soil heat conductivity equation,respectively.These two parts are coupled through ground heat flux for energy transfer,root-zone water potential-dependent stomatal resistance,and surface soil water potential-dependent evaporation for water transfer.Evaporation is calculated from the water potential gradient at soil-atmosphere interface and aerodynamic resistance,and transpiration is determined using a Jarvis-type function linking soil water availability and atmospheric conditions.Some other processes,such as canopy interception and deep percolation,are also considered in the HDS-SPAC model.The hybrid dual-source approach allows HDS-SPAC to simulate heat and water transfer in an ecosystem with a large range of vegetation cover change temporally or spatially.The model was tested with observations at a wheat field in North China Plain over a time of three months covering both wet and dry conditions.The fractional crop covers change from 30% to over 90%.The results indicated that the HDS-SPAC model can estimate actual evaporation and transpiration partitioning and soil water content and temperature over the whole range of tested vegetation coverage.