This study aims to examine the effect of clay micro particles addition on the microstructure,wear and corrosion behavior of PEO coatings on AM 50 magnesium alloy.PEO coatings were prepared using an aluminate-based ele...This study aims to examine the effect of clay micro particles addition on the microstructure,wear and corrosion behavior of PEO coatings on AM 50 magnesium alloy.PEO coatings were prepared using an aluminate-based electrolyte with and without the presence of 5 g/L clay particles.The structure and composition of the coatings were evaluated using SEM,EDS and XRD.The wear investigations were conducted using a ball-on-disk tribometer at 2,5 and 10 N loads.The corrosion behavior of the coatings was examined using polarization and EIS tests in 0.5 wt.%NaCl.The results revealed that the addition of clay particles deteriorated the wear resistance of the coatings under the loads of 5 and 10 N.The SEM examinations of the worn surfaces indicated that a combination of adhesive and abrasive wear mechanisms was activated for the coating with clay particles.The poor wear performance of the clay-incorporated coating was related to its lower adhesion strength and higher roughness.The potentiodynamic polarization examinations revealed that the addition of clay particles slightly decreased the corrosion rate of the coatings.Corrosion resistance of the clay-containing coating was attributed to its compactness,as indicated by the results of EIS tests.展开更多
This paper deals with characteristics of organo-mineral complexing of microaggregates in the paddy soils developed from purple soils in Sichuan, China. Results show that the contents of organic matter in microaggregat...This paper deals with characteristics of organo-mineral complexing of microaggregates in the paddy soils developed from purple soils in Sichuan, China. Results show that the contents of organic matter in microaggregates are in the order of 1--0.25 mm > smaller than 0.05 mm > 0.05-0.25 mm. But the organic matter in 1-0.01 mm microaggregates accounts for 68.1%-78.7% of that in soil. The organic matter in<0.05 mm microaggregates is complexed humus on the whole, of which the degree of organo-mineral complexing varies between 96.1% and 99.5%, which is higher than that of the soil or>0.05 mm microaggregates. The contents of loosely combined humus and the ratios of loosely and tightly combined humus markedly decline with the size of microaggregates. Fresh soil humus formed from semi-decomposed organic material or organic manure added is combined first with<0.001 mm clay, and then aggregated with other organic and mineral particles to form larger microaggregates, in which the aging of humus happens at the same time; whereas organic matter of the light fraction is mainly involved in the formation of>0.05 mm microaggregates.展开更多
Effect of hot and cold dust charge on the propagation of dust-acoustic waves (DAWs) in unmagnetized plasma having electrons, singly charged ions, hot and cold dust grains has been investigated. The reductive perturb...Effect of hot and cold dust charge on the propagation of dust-acoustic waves (DAWs) in unmagnetized plasma having electrons, singly charged ions, hot and cold dust grains has been investigated. The reductive perturbation method is employed to reduce the basic set of fluid equations to the Kortewege-de Vries (KdV) equation. At the critical hot dusty plasma density Nho, the KdV equation is not appropriate for describing the system. Hence, a set of stretched coordinates is considered to derive the modified KdV equation. It is found that the presence of hot and cold dust charge grains not only significantly modifies the basic properties of solitary structure, but also changes the polarity of the solitary profiles. In the vicinity of the critical hot dusty plasma density Nho, neither KdV nor mKdV equation is appropriate for describing the DAWs. Therefore, a further modified KdV (fmKdV) equation is derived, which admits both soliton and double layer solutions.展开更多
A simplified probabilistic analysis of geomembrane punctures from granular material was presented when subjected to liquid pressure.The probability distribution of contact force between geomembrane and granular materi...A simplified probabilistic analysis of geomembrane punctures from granular material was presented when subjected to liquid pressure.The probability distribution of contact force between geomembrane and granular material was obtained based on the principle of equal probability and assumptions that grains are spheres with constant size.A particle flow code PFC3Dwas employed to simulate the contact process which indicates a good agreement with the theoretical probabilistic analysis.The odds of geomembrane puncture from grains of constant size were obtained by evaluating the puncture force which should not exceed the puncture resistance of geomembrane.The effects of grain radius,grain rigidity and liquid pressure were studied in more detail and displayed in graphs.Both high-level of liquid pressure and large grain can result in high risk of geomembrane puncture.The influence of grain rigidity on the geomembrane puncture odds is significant.For granular material with a grain size distribution,the geomembrane puncture odds can be estimated by the grain size distribution,served as weight function and it is a cautious design if the largest grain is chosen as the design grain size.展开更多
Studies conducted over several decades have shown that the freeze-thaw cycles are a process of energy input and output in soil, which help drive the formation of soil structure, through water expansion by crystallizat...Studies conducted over several decades have shown that the freeze-thaw cycles are a process of energy input and output in soil, which help drive the formation of soil structure, through water expansion by crystallization and the movement of water and salts by thermal gradients. However, most of these studies are published in Russian or Chinese and are less accessible to international researchers. This review brought together a wide range of studies on the effects of freezing and thawing on soil structure. The following findings are summarized: i) soil structure after freeze-thaw cycles changes considerably and the changes are due to the mechanical fragmentation of soil coarse mineral particles and the aggregation of soil fine particles; ii) the particle size of soil becomes homogeneous and the variation in soil structure weakens as the number of freeze-thaw cycles increases; iii) in the freezing process of soil, an important principle in the variation of soil particle bonding is presented as: condensation →aggregation→ crystallization; iv) the freeze-thaw cycling process has a strong effect on soil structure by changing the granulometric composition of mineral particles and structures within the soil. The freeze-thaw cycling process strengthens particle bonding, which causes an overall increase in aggregate stability of soil, showing a process from destruction to reconstruction.展开更多
文摘This study aims to examine the effect of clay micro particles addition on the microstructure,wear and corrosion behavior of PEO coatings on AM 50 magnesium alloy.PEO coatings were prepared using an aluminate-based electrolyte with and without the presence of 5 g/L clay particles.The structure and composition of the coatings were evaluated using SEM,EDS and XRD.The wear investigations were conducted using a ball-on-disk tribometer at 2,5 and 10 N loads.The corrosion behavior of the coatings was examined using polarization and EIS tests in 0.5 wt.%NaCl.The results revealed that the addition of clay particles deteriorated the wear resistance of the coatings under the loads of 5 and 10 N.The SEM examinations of the worn surfaces indicated that a combination of adhesive and abrasive wear mechanisms was activated for the coating with clay particles.The poor wear performance of the clay-incorporated coating was related to its lower adhesion strength and higher roughness.The potentiodynamic polarization examinations revealed that the addition of clay particles slightly decreased the corrosion rate of the coatings.Corrosion resistance of the clay-containing coating was attributed to its compactness,as indicated by the results of EIS tests.
文摘This paper deals with characteristics of organo-mineral complexing of microaggregates in the paddy soils developed from purple soils in Sichuan, China. Results show that the contents of organic matter in microaggregates are in the order of 1--0.25 mm > smaller than 0.05 mm > 0.05-0.25 mm. But the organic matter in 1-0.01 mm microaggregates accounts for 68.1%-78.7% of that in soil. The organic matter in<0.05 mm microaggregates is complexed humus on the whole, of which the degree of organo-mineral complexing varies between 96.1% and 99.5%, which is higher than that of the soil or>0.05 mm microaggregates. The contents of loosely combined humus and the ratios of loosely and tightly combined humus markedly decline with the size of microaggregates. Fresh soil humus formed from semi-decomposed organic material or organic manure added is combined first with<0.001 mm clay, and then aggregated with other organic and mineral particles to form larger microaggregates, in which the aging of humus happens at the same time; whereas organic matter of the light fraction is mainly involved in the formation of>0.05 mm microaggregates.
文摘Effect of hot and cold dust charge on the propagation of dust-acoustic waves (DAWs) in unmagnetized plasma having electrons, singly charged ions, hot and cold dust grains has been investigated. The reductive perturbation method is employed to reduce the basic set of fluid equations to the Kortewege-de Vries (KdV) equation. At the critical hot dusty plasma density Nho, the KdV equation is not appropriate for describing the system. Hence, a set of stretched coordinates is considered to derive the modified KdV equation. It is found that the presence of hot and cold dust charge grains not only significantly modifies the basic properties of solitary structure, but also changes the polarity of the solitary profiles. In the vicinity of the critical hot dusty plasma density Nho, neither KdV nor mKdV equation is appropriate for describing the DAWs. Therefore, a further modified KdV (fmKdV) equation is derived, which admits both soliton and double layer solutions.
基金Project(51079047)supported by the National Natural Science Foundation of China
文摘A simplified probabilistic analysis of geomembrane punctures from granular material was presented when subjected to liquid pressure.The probability distribution of contact force between geomembrane and granular material was obtained based on the principle of equal probability and assumptions that grains are spheres with constant size.A particle flow code PFC3Dwas employed to simulate the contact process which indicates a good agreement with the theoretical probabilistic analysis.The odds of geomembrane puncture from grains of constant size were obtained by evaluating the puncture force which should not exceed the puncture resistance of geomembrane.The effects of grain radius,grain rigidity and liquid pressure were studied in more detail and displayed in graphs.Both high-level of liquid pressure and large grain can result in high risk of geomembrane puncture.The influence of grain rigidity on the geomembrane puncture odds is significant.For granular material with a grain size distribution,the geomembrane puncture odds can be estimated by the grain size distribution,served as weight function and it is a cautious design if the largest grain is chosen as the design grain size.
基金supported by the Natural Science Foundation of China(No.41301070)the National Key Basic Research Program(973 Program) of China (No.2012CB026106)+2 种基金the West Light Program for Talent Cultivation of Chinese Academy of Sciences(toDr.ZHANG Ze)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,China Ministry of Education(to Dr.ZHANG Ze)the Scientific and Technical Projects of the Transport Department of Gansu Province,China(No.2014-03)
文摘Studies conducted over several decades have shown that the freeze-thaw cycles are a process of energy input and output in soil, which help drive the formation of soil structure, through water expansion by crystallization and the movement of water and salts by thermal gradients. However, most of these studies are published in Russian or Chinese and are less accessible to international researchers. This review brought together a wide range of studies on the effects of freezing and thawing on soil structure. The following findings are summarized: i) soil structure after freeze-thaw cycles changes considerably and the changes are due to the mechanical fragmentation of soil coarse mineral particles and the aggregation of soil fine particles; ii) the particle size of soil becomes homogeneous and the variation in soil structure weakens as the number of freeze-thaw cycles increases; iii) in the freezing process of soil, an important principle in the variation of soil particle bonding is presented as: condensation →aggregation→ crystallization; iv) the freeze-thaw cycling process has a strong effect on soil structure by changing the granulometric composition of mineral particles and structures within the soil. The freeze-thaw cycling process strengthens particle bonding, which causes an overall increase in aggregate stability of soil, showing a process from destruction to reconstruction.