The mechanical behavior of sand is very complex, and depends on factors including confining pressure, density, and drainage condition. A soil mass can be contractive or dilative when subjected to shear loading, and ev...The mechanical behavior of sand is very complex, and depends on factors including confining pressure, density, and drainage condition. A soil mass can be contractive or dilative when subjected to shear loading, and eventually reaches an ultimate state, referred to as the critical state in soil mechanics. Conventional approach to explore the mechanical behavior of sand mainly relies on the experimental tests in laboratory. This paper gives an alternative view to this subject using discrete element method (DEM), which has attracted much attention in recent years. The implementation of the DEM is carried out by a series of numerical tests on granular assemblies with varying initial densities and confining pressures, under different test configurations. The results demonstrate that such numerical simulations can produce correct responses of the sand behavior in general, including the critical state response, as compared to experimental observations. In addition, the DEM can further provide details of the microstructure evolutions during shearing processes, and the resulting induced anisotropy can be fully captured and quantified in the particle scale.展开更多
One dimensional and triaxial compression tests of air-dried and oven-dried Fujinomori clay and Pisa clay were carried out. Water content is less than 4.5% and 1.0% for air-dried and oven-dried clay specimens, respecti...One dimensional and triaxial compression tests of air-dried and oven-dried Fujinomori clay and Pisa clay were carried out. Water content is less than 4.5% and 1.0% for air-dried and oven-dried clay specimens, respectively. In all tests, axial strain rate was changed stepwise many times and drained creep tests were performed several times during monotonic loading at a constant strain rate. Global unloading (and also reloading in some tests) was applied during which creep loading tests were performed several times. Cyclic loading with small stress amplitude and several cycles was also performed to calculate the modulus of elasticity of the clay in tests. Local displacement transducer was used in triaxial compression test to increase measuring accuracy of axial strain. The results show that air-dried and oven-dried clay have noticeable viscous properties; during global unloading, creep deformation changes from positive to negative, i.e. there exist neutral points (zero creep deformation or no creep deformation point) in global unloading part of strain-stress curve; viscous property of Fujinomori clay decreases when water content decreases, i.e. viscous property of air-dried Fujinomori clay is more significant than that of oven-dried Fujinomori clay.展开更多
基金the National Natural Science Foundation of China (Nos. 10725210 and 50509021)the Postdoctoral Foundations in China (No. 20070421202)+1 种基金the Program for New Century Excellent Talents in University in China (No. NCET-05-05010)the Com-petitive Postdoctoral Research Project in Zhejiang Province, China
文摘The mechanical behavior of sand is very complex, and depends on factors including confining pressure, density, and drainage condition. A soil mass can be contractive or dilative when subjected to shear loading, and eventually reaches an ultimate state, referred to as the critical state in soil mechanics. Conventional approach to explore the mechanical behavior of sand mainly relies on the experimental tests in laboratory. This paper gives an alternative view to this subject using discrete element method (DEM), which has attracted much attention in recent years. The implementation of the DEM is carried out by a series of numerical tests on granular assemblies with varying initial densities and confining pressures, under different test configurations. The results demonstrate that such numerical simulations can produce correct responses of the sand behavior in general, including the critical state response, as compared to experimental observations. In addition, the DEM can further provide details of the microstructure evolutions during shearing processes, and the resulting induced anisotropy can be fully captured and quantified in the particle scale.
文摘One dimensional and triaxial compression tests of air-dried and oven-dried Fujinomori clay and Pisa clay were carried out. Water content is less than 4.5% and 1.0% for air-dried and oven-dried clay specimens, respectively. In all tests, axial strain rate was changed stepwise many times and drained creep tests were performed several times during monotonic loading at a constant strain rate. Global unloading (and also reloading in some tests) was applied during which creep loading tests were performed several times. Cyclic loading with small stress amplitude and several cycles was also performed to calculate the modulus of elasticity of the clay in tests. Local displacement transducer was used in triaxial compression test to increase measuring accuracy of axial strain. The results show that air-dried and oven-dried clay have noticeable viscous properties; during global unloading, creep deformation changes from positive to negative, i.e. there exist neutral points (zero creep deformation or no creep deformation point) in global unloading part of strain-stress curve; viscous property of Fujinomori clay decreases when water content decreases, i.e. viscous property of air-dried Fujinomori clay is more significant than that of oven-dried Fujinomori clay.