To better design and analyze concrete structures, the mechanical properties of concrete subjected to impact loadings are investigated. Concrete is considered to be a two-phase composite made up of micro-cracks and sol...To better design and analyze concrete structures, the mechanical properties of concrete subjected to impact loadings are investigated. Concrete is considered to be a two-phase composite made up of micro-cracks and solid parts which consist of coarse aggregate particles and a cement mortar matrix. The cement mortar matrix is assumed to be elastic, homogeneous and isotropic. Based on the Moil-Tanaka concept of average stress and the Eshelby equivalent inclusion theory, a dynamic constitutive model is developed to simulate the impact responses of concrete. The impact compression experiments of concrete and cement mortar are also carried out. Experimental results show that concrete and cement mortar are rate-dependent. Under the same impact velocity, the load-carrying capacity of concrete is higher than that of cement mortar. Whereas, the maximum strain of concrete is lower than that of cement mortar. Regardless of whether it is concrete or cement mortar, with the increase in the impact velocity, the fragment size of specimens after experiment decreases.展开更多
Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process...Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process.In this study,the leaching kinetics of REEs from PG in nitric acid at different temperatures were explored in depth.The experiments show that the maximum leaching recovery for ΣREE was 58.5%,75.9%and 83.4%at 30,60 and 80℃,respectively.Additionally,among La,Ce,Y and Nd,Y had the highest leaching rate.A new shrinking core model(SCM)based on the dissolution reaction of a cylindrical solid particle with interfacial transfer and diffusion across the product layer as the rate-controlling step was deduced and could well fit the leaching process of REEs from PG.The activation energies for the leaching of La,Ce,Y and Nd were determined on the basis of the new cylindrical SCM.In summary,the cylindrical SCM was a more suitable fitting model than the spherical SCM,and the interfacial transfer and diffusion across the product layer were the rate-controlling step for REE leaching from the PG sample.展开更多
A set of equations is suggested to describe the kinetics of degradation of organic compounds applied tosoils and the kinetics of growth of the involved microorganisme:where x is the concentration of organic compound a...A set of equations is suggested to describe the kinetics of degradation of organic compounds applied tosoils and the kinetics of growth of the involved microorganisme:where x is the concentration of organic compound at time t, m is the number of forcroorganisms capableof degrading the organic compound at time t, while j, k, f and g are positive constaats. This model cansatisfactorily be used to explain the degradation curve of organic compounds and the growth curve of theinvolved microorganisms.展开更多
Heavy metals are well recognized as potential health hazards as they can neither be degraded nor biologically detoxified. This experimental study aims to investigate the possible use of Libyan local soil, Ashkida soil...Heavy metals are well recognized as potential health hazards as they can neither be degraded nor biologically detoxified. This experimental study aims to investigate the possible use of Libyan local soil, Ashkida soil, mined in the Southern Province of Libya as a low cost adsorbent to remove copper ions from aqueous solutions. In this work, the effects of various parameters such as adsorbent dosage, initial concentration of copper, agitation rate, contact time and solution pH level on the adsorption efficiency are investigated through batch experiments at room temperature. The results indicate that the optimum conditions for copper removal from aqueous solutions are 60 minutes contact time, 10 g/L adsorbent dose and 500 rpm agitation rate at natural pH value. The results are fitted to Freundlich, Langmuir, Temkin and Dubinin-Radushkevich isotherms. A satisfactory agreement between the experimental data and the model-predicted values is expressed by the correlation coefficient, r^2, and the total mean error, E%. Freundlich model offers the best representation of adsorption process revealing a monolayer adsorption capacity, qmax, of 27.03 mg/g. A comparison of kinetic models applied to the adsorption of copper ions on the adsorbent is evaluated by simple first order, pseudo first order and pseudo second order kinetic models. Kinetic parameters, rate constant, equilibrium sorption capacities and related correlation coefficients for each kinetic model are determined revealing that the pseudo second order kinetic model is in a better correlation with the experimental data in comparison with the other isotherms.展开更多
In this work,the efficiency of an adsorption process,in which Moroccan diatomite(ND)is used as a low-cost adsorbent to remove Congo red(CR)dye from contaminated waters in batch and column system,was examined.The influ...In this work,the efficiency of an adsorption process,in which Moroccan diatomite(ND)is used as a low-cost adsorbent to remove Congo red(CR)dye from contaminated waters in batch and column system,was examined.The influence of experimental conditions(pH,adsorbent dose and temperature)on the adsorption of CR onto the ND adsorbent was studied.A study of the adsorption kinetics for CR revealed that a pseudo-second-order model provided the best fit to the experimental kinetic data,and the equilibrium data were well described by the Langmuir isotherm model with an adsorption capacity of 6.07 mg/g using 15 g/L of ND,pH=6,contact time 3 h and 25℃.On the other hand,the ND regeneration tests were investigated and showed that the desorption reaches at least 50%when using ethanol as eluent.In addition,the adsorption process in a continuous mode was studied.Breakthrough curves were properly represented by the Yoon—Nelson model.Hence,the adsorption capacity of 5.71 mg/g was reached using 0.114 g of adsorbent,CR concentration of 6 mg/L and a flow of 1 mL/min under 25℃.展开更多
This paper deduces a kinetic model for microbial degradation of pesticides in soils:where x is the concentration of pesticide at time t, so the initial concentration of the pesticide, me the initial number of pesticid...This paper deduces a kinetic model for microbial degradation of pesticides in soils:where x is the concentration of pesticide at time t, so the initial concentration of the pesticide, me the initial number of pesticide-degrading microorganisms, M the carrying capacity for the microorganisms, μ the specific growth rate of the microorganisms, and k the rate constant for the pesticide degradation.In periodic applications of pesticides, this model can be used to continuously describe every degradation curve. Whether a lag phase occurs or not, we can obtain the minimum residue of the pesticide (xe):xe=xdexp(-kMr)/[1-exp(-ker) ]where r is the regular time internals between applications, and xd the dosage of the pesticide.展开更多
In order to evaluate the impact of off-road terrains on the ride comfort of construction vehicles,a nonlinear dynamic model of the construction vehicles interacting with the terrain deformations is established based o...In order to evaluate the impact of off-road terrains on the ride comfort of construction vehicles,a nonlinear dynamic model of the construction vehicles interacting with the terrain deformations is established based on Matlab/Simulink software.The weighted root mean square(RMS)acceleration responses and the power spectral density(PSD)acceleration responses of the driver s seat heave,the pitch and roll angle of the cab in the low-frequency region are chosen as objective functions under different operation conditions of the vehicle.The results show that the impact of off-road terrains on the driver s ride comfort and health is clear under various conditions of deformable terrains and range of vehicle velocities.In particular,the driver s ride comfort is greatly affected by a soil terrain while the comfortable shake of the driver is strongly affected by a sand terrain.In addition,when the vehicle travels on a poor soil terrain in the frequency range below 4 Hz,more resonance peaks of acceleration PSD responses occurred than that on a rigid road of ISO 2631-1 level C.Thus,the driver s health is significantly affected by the deformable terrain in a low-frequency range.展开更多
According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield mac...According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield machine was proposed. Firstly,the nominal load model of shield machine and the ranges of model parameters were obtained by the soil mechanics parameters of certain geological conditions and the messages of the self-learning of shield machine by tunneling for previous segments. Based on this rectification mechanism model with known ranges of parameters,a sliding mode robust controller was proposed. Finally,the simulation analysis was developed to verify the effectiveness of the proposed controller. The simulation results show that the sliding mode robust controller can be implemented in the attitude rectification process of the shield machine and it has stronger robustness to overcome the soil disturbance.展开更多
Soil frost heaving is a complex physical, mechanical, and chemical synthesis process. This paper summarizes the frost-heaving theory over half a century, including the capillary theory, the frozen-fringe theory, and t...Soil frost heaving is a complex physical, mechanical, and chemical synthesis process. This paper summarizes the frost-heaving theory over half a century, including the capillary theory, the frozen-fringe theory, and those achievements recently made by scholars. In this paper, we also discus researching achievements of the soil-prediction model during the past 40 years, including the water-dynamics model, the rigid-ice model, the segregation-potential model, and the thermo-dynamic model. This summary and discussion will enable readers to understand the latest direction of research; it also summarizes the development of frost-heave prediction models and their advantages and shortcomings.展开更多
Metolachlor retention on a Sharkey clay soil was quantified using a kinetic batch method for different initial solution concentrations. Time-dependent adsorption was carried out by monitoring solution concentration at...Metolachlor retention on a Sharkey clay soil was quantified using a kinetic batch method for different initial solution concentrations. Time-dependent adsorption was carried out by monitoring solution concentration at different reaction times. Adsorption was found to be highly kinetic in nature. Attempts were made to describe metolachlor retention based on a kinetic multireaction model which includes reversible and irreversible retention processes of the equilibrium and kinetic types. The predictive capability of the model for the description of experimental results for metolachlor retention was examined and proved to be adequate.展开更多
A viscoelastic micromechanical model is presented to predict the dynamic modulus of asphalt concrete (AC) and investigate the effect of imperfect interface between asphalt mastic and aggregates on the overall viscoe...A viscoelastic micromechanical model is presented to predict the dynamic modulus of asphalt concrete (AC) and investigate the effect of imperfect interface between asphalt mastic and aggregates on the overall viscoelastic characteristics of AC. The linear spring layer model is introduced to simulate the interface imperfection. Based on the effective medium theory, the viscoelastic micromechanical model is developed by two equivalence processes. The present prediction is compared with available experimental data to verify the developed framework. It is found that the proposed model has the capability to predict the dynamic modulus of AC. Interface effect on the dynamic modulus of AC is discussed using the developed model. It is shown that the interfacial bonding strength has a significant influence on the global mechanical performance of AC, and that continued improvement in surface fimctionalization is necessary to realize the full potential of aggregates reinforcement.展开更多
A novel magnetic adsorbent was synthesized by magnetizing bentonite by APTES-Fe_3O_4 via a functional groupbridged interaction. The characterization of APTES-Fe_3O_4/bentonite was conducted via transmission electron m...A novel magnetic adsorbent was synthesized by magnetizing bentonite by APTES-Fe_3O_4 via a functional groupbridged interaction. The characterization of APTES-Fe_3O_4/bentonite was conducted via transmission electron microscope(TEM), X-ray diffraction(XRD), Fourier transform infrared spectrophotometer(FT-IR), thermal gravimetric analysis(TGA), vibrating sample magnetometer(VSM), zeta potential analysis and Brunner–Emmet–Teller(BET). The APTES-Fe_3O_4/bentonite was assessed as adsorbents for methylene blue(MB) with a high adsorption capacity(91.83 mg·g^(-1)). Factors affecting the adsorption of MB(such as p H, equilibrium time, temperature and initial concentration) were investigated. The adsorption process completely reaches equilibrium after 120 min and the maximum sorption is achieved at p H 8.0. The adsorption trend follows the pseudosecond order kinetics model. The adsorption data gives good fits with Langmuir isotherm model. The parameter factor RLfalls between 0 and 1, indicating the adsorption of MB is favorable. The adsorption process is endothermic with positive ΔH^0 values. The positive values of ΔG^0 confirm the affinity of the adsorbent towards MB, and suggest an increased randomness at the solid–liquid interface during the adsorption process. Regeneration of the saturated adsorbent was easily carried out via gamma-irradiation.展开更多
Using the fuzzy rule-based classification method, normalized difference vegetation index (NDVI) images acquired from 1982 to 1998 were classified into seventeen phases. Based on these classification images, a probabil...Using the fuzzy rule-based classification method, normalized difference vegetation index (NDVI) images acquired from 1982 to 1998 were classified into seventeen phases. Based on these classification images, a probabilistic cellular automata-Markov Chain model was developed and used to simulate a land cover scenario of China for the year 2014. Spatiotemporal dynamics of land use/cover in China from 1982 to 2014 were then analyzed and evaluated. The results showed that the change trends of land cover type from 1998 to 2014 would be contrary to those from 1982 to 1998. In particular, forestland and grassland areas decreased by 1.56% and 1.46%, respectively, from 1982 to 1998, and should increase by 1.5% and 2.3% from 1998 to 2014, respectively.展开更多
A dynamic hysteretic constitutive model for soil dynamics, Ramberg-Osgood model, is introduced and improved in the paper. Since the model is inherently 1D and is assumed to apply to shear components only, other compon...A dynamic hysteretic constitutive model for soil dynamics, Ramberg-Osgood model, is introduced and improved in the paper. Since the model is inherently 1D and is assumed to apply to shear components only, other components of the deviatorie stress and strain and their relations in 3D case could not be fully described. Two parameters, the equivalent shear stress and the equivalent shear strain, are defined to reasonably establish relations between each of stress and strain components respectively. The constitutive equations of the initial Ramberg-Osgood model are extended to generalize the theory into multidimensional cases. Difficulties of the definition of load reversal in 3D are also addressed and solved. The improved constitutive model for soil dynamics is verified by comparisons with different soil dynamic testing data covering both sands and clays. Results show that the dynamic nonlinear hysteretie behaviors of soils can be well predicted with the improved constitutive model.展开更多
基金The National Natural Science Foundation of China(No. 11162015)the Natural Science Foundation of Ningxia Hui Autonomous Region (No. NZ1106)
文摘To better design and analyze concrete structures, the mechanical properties of concrete subjected to impact loadings are investigated. Concrete is considered to be a two-phase composite made up of micro-cracks and solid parts which consist of coarse aggregate particles and a cement mortar matrix. The cement mortar matrix is assumed to be elastic, homogeneous and isotropic. Based on the Moil-Tanaka concept of average stress and the Eshelby equivalent inclusion theory, a dynamic constitutive model is developed to simulate the impact responses of concrete. The impact compression experiments of concrete and cement mortar are also carried out. Experimental results show that concrete and cement mortar are rate-dependent. Under the same impact velocity, the load-carrying capacity of concrete is higher than that of cement mortar. Whereas, the maximum strain of concrete is lower than that of cement mortar. Regardless of whether it is concrete or cement mortar, with the increase in the impact velocity, the fragment size of specimens after experiment decreases.
基金Project(51904104) supported by the National Natural Science Foundation of ChinaProject(2020JJ5174) supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2019M662780) supported by China Postdoctoral Science FoundationProject(19C0746) supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(2021-2843) supported by College Student Innovation and Entrepreneurship Training Program of Hunan Province,China。
文摘Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process.In this study,the leaching kinetics of REEs from PG in nitric acid at different temperatures were explored in depth.The experiments show that the maximum leaching recovery for ΣREE was 58.5%,75.9%and 83.4%at 30,60 and 80℃,respectively.Additionally,among La,Ce,Y and Nd,Y had the highest leaching rate.A new shrinking core model(SCM)based on the dissolution reaction of a cylindrical solid particle with interfacial transfer and diffusion across the product layer as the rate-controlling step was deduced and could well fit the leaching process of REEs from PG.The activation energies for the leaching of La,Ce,Y and Nd were determined on the basis of the new cylindrical SCM.In summary,the cylindrical SCM was a more suitable fitting model than the spherical SCM,and the interfacial transfer and diffusion across the product layer were the rate-controlling step for REE leaching from the PG sample.
文摘A set of equations is suggested to describe the kinetics of degradation of organic compounds applied tosoils and the kinetics of growth of the involved microorganisme:where x is the concentration of organic compound at time t, m is the number of forcroorganisms capableof degrading the organic compound at time t, while j, k, f and g are positive constaats. This model cansatisfactorily be used to explain the degradation curve of organic compounds and the growth curve of theinvolved microorganisms.
文摘Heavy metals are well recognized as potential health hazards as they can neither be degraded nor biologically detoxified. This experimental study aims to investigate the possible use of Libyan local soil, Ashkida soil, mined in the Southern Province of Libya as a low cost adsorbent to remove copper ions from aqueous solutions. In this work, the effects of various parameters such as adsorbent dosage, initial concentration of copper, agitation rate, contact time and solution pH level on the adsorption efficiency are investigated through batch experiments at room temperature. The results indicate that the optimum conditions for copper removal from aqueous solutions are 60 minutes contact time, 10 g/L adsorbent dose and 500 rpm agitation rate at natural pH value. The results are fitted to Freundlich, Langmuir, Temkin and Dubinin-Radushkevich isotherms. A satisfactory agreement between the experimental data and the model-predicted values is expressed by the correlation coefficient, r^2, and the total mean error, E%. Freundlich model offers the best representation of adsorption process revealing a monolayer adsorption capacity, qmax, of 27.03 mg/g. A comparison of kinetic models applied to the adsorption of copper ions on the adsorbent is evaluated by simple first order, pseudo first order and pseudo second order kinetic models. Kinetic parameters, rate constant, equilibrium sorption capacities and related correlation coefficients for each kinetic model are determined revealing that the pseudo second order kinetic model is in a better correlation with the experimental data in comparison with the other isotherms.
文摘In this work,the efficiency of an adsorption process,in which Moroccan diatomite(ND)is used as a low-cost adsorbent to remove Congo red(CR)dye from contaminated waters in batch and column system,was examined.The influence of experimental conditions(pH,adsorbent dose and temperature)on the adsorption of CR onto the ND adsorbent was studied.A study of the adsorption kinetics for CR revealed that a pseudo-second-order model provided the best fit to the experimental kinetic data,and the equilibrium data were well described by the Langmuir isotherm model with an adsorption capacity of 6.07 mg/g using 15 g/L of ND,pH=6,contact time 3 h and 25℃.On the other hand,the ND regeneration tests were investigated and showed that the desorption reaches at least 50%when using ethanol as eluent.In addition,the adsorption process in a continuous mode was studied.Breakthrough curves were properly represented by the Yoon—Nelson model.Hence,the adsorption capacity of 5.71 mg/g was reached using 0.114 g of adsorbent,CR concentration of 6 mg/L and a flow of 1 mL/min under 25℃.
文摘This paper deduces a kinetic model for microbial degradation of pesticides in soils:where x is the concentration of pesticide at time t, so the initial concentration of the pesticide, me the initial number of pesticide-degrading microorganisms, M the carrying capacity for the microorganisms, μ the specific growth rate of the microorganisms, and k the rate constant for the pesticide degradation.In periodic applications of pesticides, this model can be used to continuously describe every degradation curve. Whether a lag phase occurs or not, we can obtain the minimum residue of the pesticide (xe):xe=xdexp(-kMr)/[1-exp(-ker) ]where r is the regular time internals between applications, and xd the dosage of the pesticide.
基金The Science and Technology Support Program of Jiangsu Province(No.BE2014133)the Prospective Joint Research Program of Jiangsu Province(No.BY2014127-01)
文摘In order to evaluate the impact of off-road terrains on the ride comfort of construction vehicles,a nonlinear dynamic model of the construction vehicles interacting with the terrain deformations is established based on Matlab/Simulink software.The weighted root mean square(RMS)acceleration responses and the power spectral density(PSD)acceleration responses of the driver s seat heave,the pitch and roll angle of the cab in the low-frequency region are chosen as objective functions under different operation conditions of the vehicle.The results show that the impact of off-road terrains on the driver s ride comfort and health is clear under various conditions of deformable terrains and range of vehicle velocities.In particular,the driver s ride comfort is greatly affected by a soil terrain while the comfortable shake of the driver is strongly affected by a sand terrain.In addition,when the vehicle travels on a poor soil terrain in the frequency range below 4 Hz,more resonance peaks of acceleration PSD responses occurred than that on a rigid road of ISO 2631-1 level C.Thus,the driver s health is significantly affected by the deformable terrain in a low-frequency range.
基金Project(2007CB714006) supported by the National Basic Research Program of China
文摘According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield machine was proposed. Firstly,the nominal load model of shield machine and the ranges of model parameters were obtained by the soil mechanics parameters of certain geological conditions and the messages of the self-learning of shield machine by tunneling for previous segments. Based on this rectification mechanism model with known ranges of parameters,a sliding mode robust controller was proposed. Finally,the simulation analysis was developed to verify the effectiveness of the proposed controller. The simulation results show that the sliding mode robust controller can be implemented in the attitude rectification process of the shield machine and it has stronger robustness to overcome the soil disturbance.
文摘Soil frost heaving is a complex physical, mechanical, and chemical synthesis process. This paper summarizes the frost-heaving theory over half a century, including the capillary theory, the frozen-fringe theory, and those achievements recently made by scholars. In this paper, we also discus researching achievements of the soil-prediction model during the past 40 years, including the water-dynamics model, the rigid-ice model, the segregation-potential model, and the thermo-dynamic model. This summary and discussion will enable readers to understand the latest direction of research; it also summarizes the development of frost-heave prediction models and their advantages and shortcomings.
文摘Metolachlor retention on a Sharkey clay soil was quantified using a kinetic batch method for different initial solution concentrations. Time-dependent adsorption was carried out by monitoring solution concentration at different reaction times. Adsorption was found to be highly kinetic in nature. Attempts were made to describe metolachlor retention based on a kinetic multireaction model which includes reversible and irreversible retention processes of the equilibrium and kinetic types. The predictive capability of the model for the description of experimental results for metolachlor retention was examined and proved to be adequate.
基金Project(51408173)supported by the National Natural Science Foundation of China
文摘A viscoelastic micromechanical model is presented to predict the dynamic modulus of asphalt concrete (AC) and investigate the effect of imperfect interface between asphalt mastic and aggregates on the overall viscoelastic characteristics of AC. The linear spring layer model is introduced to simulate the interface imperfection. Based on the effective medium theory, the viscoelastic micromechanical model is developed by two equivalence processes. The present prediction is compared with available experimental data to verify the developed framework. It is found that the proposed model has the capability to predict the dynamic modulus of AC. Interface effect on the dynamic modulus of AC is discussed using the developed model. It is shown that the interfacial bonding strength has a significant influence on the global mechanical performance of AC, and that continued improvement in surface fimctionalization is necessary to realize the full potential of aggregates reinforcement.
基金Supported by the National Natural Science Foundation of China(61601227)the Natural Science Foundation of Jiangsu Province(BK20160939)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(16KJB180010)the Qing Lan Project and Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A novel magnetic adsorbent was synthesized by magnetizing bentonite by APTES-Fe_3O_4 via a functional groupbridged interaction. The characterization of APTES-Fe_3O_4/bentonite was conducted via transmission electron microscope(TEM), X-ray diffraction(XRD), Fourier transform infrared spectrophotometer(FT-IR), thermal gravimetric analysis(TGA), vibrating sample magnetometer(VSM), zeta potential analysis and Brunner–Emmet–Teller(BET). The APTES-Fe_3O_4/bentonite was assessed as adsorbents for methylene blue(MB) with a high adsorption capacity(91.83 mg·g^(-1)). Factors affecting the adsorption of MB(such as p H, equilibrium time, temperature and initial concentration) were investigated. The adsorption process completely reaches equilibrium after 120 min and the maximum sorption is achieved at p H 8.0. The adsorption trend follows the pseudosecond order kinetics model. The adsorption data gives good fits with Langmuir isotherm model. The parameter factor RLfalls between 0 and 1, indicating the adsorption of MB is favorable. The adsorption process is endothermic with positive ΔH^0 values. The positive values of ΔG^0 confirm the affinity of the adsorbent towards MB, and suggest an increased randomness at the solid–liquid interface during the adsorption process. Regeneration of the saturated adsorbent was easily carried out via gamma-irradiation.
基金Supported by the National Natural Science Foundation of China(No.30730021)the Applied Basic Research Programs of Yunnan Province,China(Nos.2011FZ140 and 2010CD047)
文摘Using the fuzzy rule-based classification method, normalized difference vegetation index (NDVI) images acquired from 1982 to 1998 were classified into seventeen phases. Based on these classification images, a probabilistic cellular automata-Markov Chain model was developed and used to simulate a land cover scenario of China for the year 2014. Spatiotemporal dynamics of land use/cover in China from 1982 to 2014 were then analyzed and evaluated. The results showed that the change trends of land cover type from 1998 to 2014 would be contrary to those from 1982 to 1998. In particular, forestland and grassland areas decreased by 1.56% and 1.46%, respectively, from 1982 to 1998, and should increase by 1.5% and 2.3% from 1998 to 2014, respectively.
基金the National Natural Science Foundation of China(No.51208296)the National Key Technology R&D Program(Nos.2011BAG07B01 and 2012BAK24B00)the National Basic Research Program(973)of China(No.2011CB013600)
文摘A dynamic hysteretic constitutive model for soil dynamics, Ramberg-Osgood model, is introduced and improved in the paper. Since the model is inherently 1D and is assumed to apply to shear components only, other components of the deviatorie stress and strain and their relations in 3D case could not be fully described. Two parameters, the equivalent shear stress and the equivalent shear strain, are defined to reasonably establish relations between each of stress and strain components respectively. The constitutive equations of the initial Ramberg-Osgood model are extended to generalize the theory into multidimensional cases. Difficulties of the definition of load reversal in 3D are also addressed and solved. The improved constitutive model for soil dynamics is verified by comparisons with different soil dynamic testing data covering both sands and clays. Results show that the dynamic nonlinear hysteretie behaviors of soils can be well predicted with the improved constitutive model.