[Objective] This study aimed to explore the relationship between contents of heavy metals with soil type, altitude distribution as well as physical and chemical properties. [Method] Based on determination of contents ...[Objective] This study aimed to explore the relationship between contents of heavy metals with soil type, altitude distribution as well as physical and chemical properties. [Method] Based on determination of contents of soil heavy metals and soil physical and chemical properties from agricultural land in Central Yunnan Province, the relationship between soil heavy metals with soil type, altitude distribu- tion and soil physical and chemical properties were analyzed. [Result] The average contents of all heavy metals in farmland of Central Yunnan didn't extend their limits of Grade II in the National Soil Environmental Quality Standard (GB15618-1995). and the heavy metals content in red soil was higher than that in other types. Soil Cd content changes slightly with the altitude, while contents of other heavy metals were greatly affected by altitude. There were extremely significant positive correlation between heavy metals and clay particle content, that is, soil with heavier texture has more heavy metals. There was positive correlation between pH and each heavy metal content; there were positive correlation between Mn with Pb, Cd, Hg and Hg; exchangeable Ca and Mg contents in soil show negative correlations with most heavy metals. [Conclusion] This study has provided scientific bases for the heavy metal management in Central Yunnan area.展开更多
[Objective] The aim was to clear the suitable green manure cropping pat- terns in Xiangxi tobacco-planting areas. [Method] 8 treatments were set to study the effects of the monoculture and mixed cropping of common vet...[Objective] The aim was to clear the suitable green manure cropping pat- terns in Xiangxi tobacco-planting areas. [Method] 8 treatments were set to study the effects of the monoculture and mixed cropping of common vetch (Vicia gigantea Bge.), perennial ryegrass (Lofium) and rapeseed (Brassica campestris L.) on physi- cal and chemical properties of soil and economic characters of flue-cured tobacco. [Result] (1) Green manure turnover can reduce soil bulk density by 1.08%-8.62%, and the effect of green manure mixed cropping pattern was the best. (2) Green manure turnover also can increase the soil nutrient, soil organic matter, total nitro- gen (N), total phosphorus (P), total potassium (K), alkali-hydrolyzale N, rapidly available P and rapidly available K by 1.44%-6.10%, 0.01-0.12 g/kg, 1.89%- 11.32%, 0.12%-3.56%, 1.06%-11.76%, 0.04%-18.93% and 0.98%-23.12%, respec- tively, and the effect of the monoculture of common vetch was the best.(3) The overall change of soil pH was not obvious.(4)Green manure turnover can increase the yield and output of flue-cured tobacco, and the effect of the monoculture of common vetch was the best. [Conclusion] The monoculture of common vetch can be generalized in the dry land of Xiangxi tobacco-planting areas.展开更多
[Objective] The objective of this study was to explore the long-term effect of Fenlong cultivation for one time. [Method] The physical and chemical properties of soil and rice yield and quality were investigated and d...[Objective] The objective of this study was to explore the long-term effect of Fenlong cultivation for one time. [Method] The physical and chemical properties of soil and rice yield and quality were investigated and determined by measuring the soil at the depth of 23 cm in the paddy field with Fenlong cultivation and 16 cm of control (conventional farming) for 7 years. [Result] Compared with the control, the average yield of early rice of the Fenlong cultivation increased by 1 972.5 kg/hm2 of the first year, an increase of 23.87%, and milled rice and protein increased by 15.95% and 14.61%, while the increase rates of organic matter, available nitrogen, available phosphorus and available potassium per hectare were 74.58%, 67.01%, 104.41% and 129.62%, respectively. In the 7th year after Fenlong cultivation, the yield increased by 234 kg/hm2 from the control, an increase of 3.21%, and milled rice and protein increased by 0.5% and 0.14%, while the increase rates of organic matter, available phosphorus and available potassium per hectare were 745.8%, 62.635 and 73.37%, respectively, and the increase rates of total nitrogen, total phosphorus and total potassium were 46.03%, 50.58% and 36.65%, respectively. During the 7 years after Fenlong cultivation, the yield increased by 3.21-23.87%, and its average net income per season increased by 1 843.61 Yuan/hm2 with a gain of 18.03%. [Conclusion] At the 7th year after Fenlong cultivation, the paddy field still had the furrow remain at a depth of 22 cm, which was 46.67% thicker than the traditional one. The yield and quality of paddy rice increased for 7 consecutive vears showed that Fenlon.q cultivation was highly feasible for paddy field.展开更多
Ground improvement has been used on many construction sites to densify granular materials, in other word, to improve soil properties and reduce potential settlement. This work presents a case study of ground improveme...Ground improvement has been used on many construction sites to densify granular materials, in other word, to improve soil properties and reduce potential settlement. This work presents a case study of ground improvement using rapid impact compaction (RIC). The research site comprises the construction of workshop and depots as part of railway development project at Batu Gajah-Ipoh, Malaysia. In-situ testing results show that the subsurface soil comprises mainly of sand and silty sand through the investigated depth extended to 10 m. Groundwater is approximately 0.5 m below the ground surface. Evaluation of improvement was based on the results of pre- and post-improvement cone penetration test (CPT). Interpretation software has been used to infer soil properties. Load test was conducted to estimate soil settlement. It is found that the technique succeeds in improving soil properties namely the relative density increases from 45% to 70%, the friction angle of soil is increased by an average of 3°, and the soil settlement is reduced by 50%: The technique succeeds in improving soil properties to approximately 5.0 m in depth depending on soil uniformity with depth.展开更多
A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of support...A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of supporting methods on the catalyst impregnation was studied and compared. Pretreatment of the support with methylalumi-noxane (MAO) followed by DMN impregnation gave higher catalyst loading and catalytic activity than the direct impregnation of DMN. Catalyst activity as high as 5.42×105g PE·molNi-1·h-1 was achieved at ethylene pressure of 6.87×105 Pa and polymerization temperature of 20℃. In particular, the morphological change of the support during MAO treatment was characterized and analyzed. It was found that nano-fiber clusters formed during the support pretreatment, which increased the surface area of the support and favored the impregnation of the catalyst. The investigation of polymerization behavior of supported catalyst revealed that the polymerization rate could be kept at a relatively high level for a long time, different from the homogeneous catalyst. By analyzing the SEM photographs of the polymer produced by the supported catalyst, the morphological evolution of polymer particles was preliminarily studied.展开更多
Performance-Based Design (PBD) is a more rational approach, particularly in seismic environments. In this approach it is relevant the performance required to structures and to geotechnical works, as well as the geot...Performance-Based Design (PBD) is a more rational approach, particularly in seismic environments. In this approach it is relevant the performance required to structures and to geotechnical works, as well as the geotechnical constitutive models used to predict the performance. The parameters of the constitutive models are related in turn to soil properties. So soil properties are a key point for Performance-Based Design. Questions arising are: (i) which are the more relevant soil properties to solve a specific PBD geotechnical problem? (ii) which are the more relevant model parameters and how they can be evaluated and/or correlated to soil properties? (iii) which is the role of the soil parameters uncertainty in Performance-Based Design? An answer to these questions is given in this paper, outlining the potential offered by the new advanced in-situ and laboratory tests and discussing the performance required by some geotechnical works.展开更多
Self-compacting concrete (SCC) is defined so that no vibration is necessary for the compaction. The main criteria of producing SCC have to satisfy the following characteristics [1, 2, 3]: (1) Ability to flow into...Self-compacting concrete (SCC) is defined so that no vibration is necessary for the compaction. The main criteria of producing SCC have to satisfy the following characteristics [1, 2, 3]: (1) Ability to flow into and completely fill complex forms under its own weight; (2) Ability to pass through and bond to congested reinforcements; (3) High resistance to aggregate segregation. Self-compacting concrete presents a significant sign in improving the product quality and efficiency of the building industry. It also enhances the working conditions and the quality and appearance of concrete. Japan has been used self-compacting concrete in bridge, building and tunnel construction since the early 1990s. In the last decade, SCC has been produced a high potential for greater acceptance and wider applications in highway bridge construction in the Europe and U.S.. However, till now, there is no application of SCC in the construction industry in Egypt. Therefore, the main objective of this research is to produce SCC by using the locally available materials in our region such as basalt, gravel, sand, limestone powder and silica fume. Experimental programme was designed to characterize the properties of fresh and hardened SCC. It comprises different concrete mixes thbricated with different types and percentages of constituent materials. Three full-scale reinforced concrete beams were fabricated from the SCC mixes and tested under flexure. For the purpose of comparison, an extra RC beam was made of conventional normal concrete to serve as a reference beam. This study, in general, demonstrated that the applications of SCC in construction industry oiler products with enhanced characteristics as well as could be economical.展开更多
Spatial variation is a ubiquitous feature of natural ecosystems, especially in arid regions, and is often present at various scales in these regions. To determine the scale dependence of the heterogeneity of soil chem...Spatial variation is a ubiquitous feature of natural ecosystems, especially in arid regions, and is often present at various scales in these regions. To determine the scale dependence of the heterogeneity of soil chemical properties and the dominant scales(factors) for soil heterogeneity in arid regions, the spatial variability of soil resources was investigated in the Gurbantunggut Desert of Central Asia at the scales of 10-3, 10-2, 10-1, 100, 101, 102, 103and 104m(from individual plant to population or community to ecosystem). Soil chemical properties including pH, electrical conductivity(EC), organic carbon, total nitrogen, available nitrogen, total phosphorus, and available phosphorus were considered in the investigation. At a scale of 10-1m, which represented the scale of individual plant, significant enrichment of soil resources occurred under shrub canopy and "fertile islands" formed in the desert ecosystem. Soil EC exhibited the largest heterogeneity at this scale, indicating that individual plants exerted a great influence on soil salinity/alkalinity. Soil nutrients exhibited the greatest heterogeneity at a scale of 102m, which represented the scale of sand dune/interdune lowlands(between communities). The main important factors contributing to soil spatial heterogeneity in the Gurbantunggut Desert were individual plants and different topographic characteristics, namely, the appearance of vegetation, especially shrubs or small trees, and existing sand dunes. Soil salinity/alkalinity and soil nutrient status behaved differently in spatial heterogeneity, with an inverse distribution between them at the individual scale.展开更多
Zinc(Zn) deficiency in paddy soils is often a problem for rice production.Flooding can decrease metal availability in some noncalcareous soils through different mechanisms associated with soil redox status.Laboratory ...Zinc(Zn) deficiency in paddy soils is often a problem for rice production.Flooding can decrease metal availability in some noncalcareous soils through different mechanisms associated with soil redox status.Laboratory experiments were performed in order to better understand the processes that governed the dynamics of Zn in non-calcareous paddy soils at varying redox potentials(Eh).Airdried non-calcareous soil samples collected from four different paddy field sites in the Philippines were submerged and incubated in a reaction cell with continuous stirring and nitrogen purging for 4 weeks,and then purged with compressed air for another week to reoxidize the system.The Eh of the four soils started at 120 to 300 mV,decreased to —220 to —300 mV after 100 to 250 h of reduction,and was maintained at this low plateau for about 2 weeks before increasing again upon reoxidation.Zinc solubility showed contrasting patterns in the four soils,with two of the soils showing a decrease in soluble Zn as the Eh became low,probably due to zinc sulfide(ZnS) precipitation.In contrast,the other two soils showed that Zn solubility was maintained during the reduced phase which could be due to the competition with iron(Fe) for precipitation with sulfide.Differences in the relative amounts of S,Fe,and manganese(Mn) oxides in the four soils apparently influenced the pattern of Zn solubility after flooding.展开更多
文摘[Objective] This study aimed to explore the relationship between contents of heavy metals with soil type, altitude distribution as well as physical and chemical properties. [Method] Based on determination of contents of soil heavy metals and soil physical and chemical properties from agricultural land in Central Yunnan Province, the relationship between soil heavy metals with soil type, altitude distribu- tion and soil physical and chemical properties were analyzed. [Result] The average contents of all heavy metals in farmland of Central Yunnan didn't extend their limits of Grade II in the National Soil Environmental Quality Standard (GB15618-1995). and the heavy metals content in red soil was higher than that in other types. Soil Cd content changes slightly with the altitude, while contents of other heavy metals were greatly affected by altitude. There were extremely significant positive correlation between heavy metals and clay particle content, that is, soil with heavier texture has more heavy metals. There was positive correlation between pH and each heavy metal content; there were positive correlation between Mn with Pb, Cd, Hg and Hg; exchangeable Ca and Mg contents in soil show negative correlations with most heavy metals. [Conclusion] This study has provided scientific bases for the heavy metal management in Central Yunnan area.
基金Supported by Key Project of Hunan Tobacco Monopoly Bureau-"Study an Demonstration of Tobacco-planting Soil Maintenance and Improvement in Xiangx Autonomous Prefecture Tobacco-growing Area"(13-14ZDAa03)the Project o China Tobacco Zhejiang Industrial Co.,Ltd.-"Demonstration and Extension o Tobacco-planting Soil Improvement Using Green Manure"(ZJZY2013B003)~~
文摘[Objective] The aim was to clear the suitable green manure cropping pat- terns in Xiangxi tobacco-planting areas. [Method] 8 treatments were set to study the effects of the monoculture and mixed cropping of common vetch (Vicia gigantea Bge.), perennial ryegrass (Lofium) and rapeseed (Brassica campestris L.) on physi- cal and chemical properties of soil and economic characters of flue-cured tobacco. [Result] (1) Green manure turnover can reduce soil bulk density by 1.08%-8.62%, and the effect of green manure mixed cropping pattern was the best. (2) Green manure turnover also can increase the soil nutrient, soil organic matter, total nitro- gen (N), total phosphorus (P), total potassium (K), alkali-hydrolyzale N, rapidly available P and rapidly available K by 1.44%-6.10%, 0.01-0.12 g/kg, 1.89%- 11.32%, 0.12%-3.56%, 1.06%-11.76%, 0.04%-18.93% and 0.98%-23.12%, respec- tively, and the effect of the monoculture of common vetch was the best.(3) The overall change of soil pH was not obvious.(4)Green manure turnover can increase the yield and output of flue-cured tobacco, and the effect of the monoculture of common vetch was the best. [Conclusion] The monoculture of common vetch can be generalized in the dry land of Xiangxi tobacco-planting areas.
文摘[Objective] The objective of this study was to explore the long-term effect of Fenlong cultivation for one time. [Method] The physical and chemical properties of soil and rice yield and quality were investigated and determined by measuring the soil at the depth of 23 cm in the paddy field with Fenlong cultivation and 16 cm of control (conventional farming) for 7 years. [Result] Compared with the control, the average yield of early rice of the Fenlong cultivation increased by 1 972.5 kg/hm2 of the first year, an increase of 23.87%, and milled rice and protein increased by 15.95% and 14.61%, while the increase rates of organic matter, available nitrogen, available phosphorus and available potassium per hectare were 74.58%, 67.01%, 104.41% and 129.62%, respectively. In the 7th year after Fenlong cultivation, the yield increased by 234 kg/hm2 from the control, an increase of 3.21%, and milled rice and protein increased by 0.5% and 0.14%, while the increase rates of organic matter, available phosphorus and available potassium per hectare were 745.8%, 62.635 and 73.37%, respectively, and the increase rates of total nitrogen, total phosphorus and total potassium were 46.03%, 50.58% and 36.65%, respectively. During the 7 years after Fenlong cultivation, the yield increased by 3.21-23.87%, and its average net income per season increased by 1 843.61 Yuan/hm2 with a gain of 18.03%. [Conclusion] At the 7th year after Fenlong cultivation, the paddy field still had the furrow remain at a depth of 22 cm, which was 46.67% thicker than the traditional one. The yield and quality of paddy rice increased for 7 consecutive vears showed that Fenlon.q cultivation was highly feasible for paddy field.
基金Projects(RG148/12AET,RG086/10AET) supported by the UMRG,MalaysiaProject(PS05812010B) supported by the Post Graduate Research Fund,Malaysia
文摘Ground improvement has been used on many construction sites to densify granular materials, in other word, to improve soil properties and reduce potential settlement. This work presents a case study of ground improvement using rapid impact compaction (RIC). The research site comprises the construction of workshop and depots as part of railway development project at Batu Gajah-Ipoh, Malaysia. In-situ testing results show that the subsurface soil comprises mainly of sand and silty sand through the investigated depth extended to 10 m. Groundwater is approximately 0.5 m below the ground surface. Evaluation of improvement was based on the results of pre- and post-improvement cone penetration test (CPT). Interpretation software has been used to infer soil properties. Load test was conducted to estimate soil settlement. It is found that the technique succeeds in improving soil properties namely the relative density increases from 45% to 70%, the friction angle of soil is increased by an average of 3°, and the soil settlement is reduced by 50%: The technique succeeds in improving soil properties to approximately 5.0 m in depth depending on soil uniformity with depth.
基金Supported by the National Natural Science Foundation of China (No. 20376069).
文摘A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of supporting methods on the catalyst impregnation was studied and compared. Pretreatment of the support with methylalumi-noxane (MAO) followed by DMN impregnation gave higher catalyst loading and catalytic activity than the direct impregnation of DMN. Catalyst activity as high as 5.42×105g PE·molNi-1·h-1 was achieved at ethylene pressure of 6.87×105 Pa and polymerization temperature of 20℃. In particular, the morphological change of the support during MAO treatment was characterized and analyzed. It was found that nano-fiber clusters formed during the support pretreatment, which increased the surface area of the support and favored the impregnation of the catalyst. The investigation of polymerization behavior of supported catalyst revealed that the polymerization rate could be kept at a relatively high level for a long time, different from the homogeneous catalyst. By analyzing the SEM photographs of the polymer produced by the supported catalyst, the morphological evolution of polymer particles was preliminarily studied.
文摘Performance-Based Design (PBD) is a more rational approach, particularly in seismic environments. In this approach it is relevant the performance required to structures and to geotechnical works, as well as the geotechnical constitutive models used to predict the performance. The parameters of the constitutive models are related in turn to soil properties. So soil properties are a key point for Performance-Based Design. Questions arising are: (i) which are the more relevant soil properties to solve a specific PBD geotechnical problem? (ii) which are the more relevant model parameters and how they can be evaluated and/or correlated to soil properties? (iii) which is the role of the soil parameters uncertainty in Performance-Based Design? An answer to these questions is given in this paper, outlining the potential offered by the new advanced in-situ and laboratory tests and discussing the performance required by some geotechnical works.
文摘Self-compacting concrete (SCC) is defined so that no vibration is necessary for the compaction. The main criteria of producing SCC have to satisfy the following characteristics [1, 2, 3]: (1) Ability to flow into and completely fill complex forms under its own weight; (2) Ability to pass through and bond to congested reinforcements; (3) High resistance to aggregate segregation. Self-compacting concrete presents a significant sign in improving the product quality and efficiency of the building industry. It also enhances the working conditions and the quality and appearance of concrete. Japan has been used self-compacting concrete in bridge, building and tunnel construction since the early 1990s. In the last decade, SCC has been produced a high potential for greater acceptance and wider applications in highway bridge construction in the Europe and U.S.. However, till now, there is no application of SCC in the construction industry in Egypt. Therefore, the main objective of this research is to produce SCC by using the locally available materials in our region such as basalt, gravel, sand, limestone powder and silica fume. Experimental programme was designed to characterize the properties of fresh and hardened SCC. It comprises different concrete mixes thbricated with different types and percentages of constituent materials. Three full-scale reinforced concrete beams were fabricated from the SCC mixes and tested under flexure. For the purpose of comparison, an extra RC beam was made of conventional normal concrete to serve as a reference beam. This study, in general, demonstrated that the applications of SCC in construction industry oiler products with enhanced characteristics as well as could be economical.
基金Supported by the National Natural Science Foundation of China(Nos.41030530 and 31300449)the National Basic Research Program(973 Program)of China(No.2009CB21102)the Western Light Project of Chinese Academy of Sciences(No.XBBS201205)
文摘Spatial variation is a ubiquitous feature of natural ecosystems, especially in arid regions, and is often present at various scales in these regions. To determine the scale dependence of the heterogeneity of soil chemical properties and the dominant scales(factors) for soil heterogeneity in arid regions, the spatial variability of soil resources was investigated in the Gurbantunggut Desert of Central Asia at the scales of 10-3, 10-2, 10-1, 100, 101, 102, 103and 104m(from individual plant to population or community to ecosystem). Soil chemical properties including pH, electrical conductivity(EC), organic carbon, total nitrogen, available nitrogen, total phosphorus, and available phosphorus were considered in the investigation. At a scale of 10-1m, which represented the scale of individual plant, significant enrichment of soil resources occurred under shrub canopy and "fertile islands" formed in the desert ecosystem. Soil EC exhibited the largest heterogeneity at this scale, indicating that individual plants exerted a great influence on soil salinity/alkalinity. Soil nutrients exhibited the greatest heterogeneity at a scale of 102m, which represented the scale of sand dune/interdune lowlands(between communities). The main important factors contributing to soil spatial heterogeneity in the Gurbantunggut Desert were individual plants and different topographic characteristics, namely, the appearance of vegetation, especially shrubs or small trees, and existing sand dunes. Soil salinity/alkalinity and soil nutrient status behaved differently in spatial heterogeneity, with an inverse distribution between them at the individual scale.
基金supported by the Global Rice Science Partnership(GRiSP) Staff Development Fundthe Swiss Agency for Development and Cooperation(SDC) awarded to Dr.S.M.Impa,International Rice Research Institute,Philippines,through its Research Fellow Partnership Programme
文摘Zinc(Zn) deficiency in paddy soils is often a problem for rice production.Flooding can decrease metal availability in some noncalcareous soils through different mechanisms associated with soil redox status.Laboratory experiments were performed in order to better understand the processes that governed the dynamics of Zn in non-calcareous paddy soils at varying redox potentials(Eh).Airdried non-calcareous soil samples collected from four different paddy field sites in the Philippines were submerged and incubated in a reaction cell with continuous stirring and nitrogen purging for 4 weeks,and then purged with compressed air for another week to reoxidize the system.The Eh of the four soils started at 120 to 300 mV,decreased to —220 to —300 mV after 100 to 250 h of reduction,and was maintained at this low plateau for about 2 weeks before increasing again upon reoxidation.Zinc solubility showed contrasting patterns in the four soils,with two of the soils showing a decrease in soluble Zn as the Eh became low,probably due to zinc sulfide(ZnS) precipitation.In contrast,the other two soils showed that Zn solubility was maintained during the reduced phase which could be due to the competition with iron(Fe) for precipitation with sulfide.Differences in the relative amounts of S,Fe,and manganese(Mn) oxides in the four soils apparently influenced the pattern of Zn solubility after flooding.