Plant biomass and biodiversity, element accumulation and return, water loss and soil erosion, and changesin soil properties were studied for up to 10 years after conversion of sparse tree-shrubby grass land into thefo...Plant biomass and biodiversity, element accumulation and return, water loss and soil erosion, and changesin soil properties were studied for up to 10 years after conversion of sparse tree-shrubby grass land into thefollowing four land use patterns: masson pine (Pznvs massonzana Lamb.) land, beautiful sweetgum (Ltq-uidambar fomosana Hance) land, vegetation reservation land, and artificial mowing land. The annualbiomass production of the masson pine land was 5060 kg ha ̄-1 being 4.9, 2.1, and 6.0 times that of the beau-tiful sweetgum land, the vegetation reservation land, and the artificial mowing land, respectively. Comparedwith the background values, the number of plant species for the vegetation reservation land increased by 10species after 10 years of land utilization, while for the masson pine and the beautiful sweetgum decreased by4, and for the artificial mowing land by 9. For masson pine land, total amount of N, P, K, Ca, and Mg neededfor producing 1000 kg dry matter was only 3.5 kg, annual element return through litter was 22 kg ha ̄-1, bothof which were much lower than those of the other patterns. Vegetation reservation was an effective measureto conserve soil and water and improve soil fertility in the red soil hilly region. Artificial mowing arousedserious degradation of vegetation and soil. Some measures and suggestions for management and exploitationof the red soil hilly region such as masson pine planting, closing hills for afforestation, and stereo-agricultureon one hill are proposed.展开更多
Scientific analysis and determination of land use lays foundation for regional sustainable development under the background of new urbanization. The research made a comprehensive analysis on land uses in Yunnan under ...Scientific analysis and determination of land use lays foundation for regional sustainable development under the background of new urbanization. The research made a comprehensive analysis on land uses in Yunnan under the background of urbanization and proposed strategies for further development, providing references for land uses scientific decision making.展开更多
Although mathematical models(e.g., De Nitrification and De Composition(DNDC) provide a powerful tool to study regional carbon budget, it is still difficult to obtain accurate simulation results because there exists la...Although mathematical models(e.g., De Nitrification and De Composition(DNDC) provide a powerful tool to study regional carbon budget, it is still difficult to obtain accurate simulation results because there exists large uncertainties in modeling regional carbon budget. Through the investigation on the sensitivity of model output parameters to the input parameters, sensitivity analysis(SA) has been proved to be able to identify the key sources of uncertainties and be helpful to reduce the model uncertainties. However, some input parameters with discrete values(e.g., land use type and soil type) and the regional effect of the sensitive parameters were rarely examined in SA. In this paper, taking the Zoige Plateau as a case area, we combined the one-factor-ata-time(OAT) with Extended Fourier Amplitude Sensitivity Test(EFAST) to conduct a SA of DNDC for simulating the regional carbon budget, including Gross Primary Productivity(GPP), Net Primary Productivity(NPP), Net Ecosystem Productivity(NEP), autotrophic respiration(Ra), soil microbial heterotrophic respiration(Rh) and ecosystem respiration(Re). The result showed that the combination of OAT and EFAST could test the contribution of the input parameters with discrete values to the output parameters. In DNDC model, land use type and soil type had a significant impact on the regional carbon budget of the Zoige Plateau, and daily temperature was also confirmed to be one of the most important parameters for carbon budget. For the other input parameters, with the change of land use type or soil type at regional scale, the sensitive parameters of carbon budget would vary accordingly. The SA results would provide scientific evidence to optimize DNDC model and they suggested that we should pay attention to the spatial/temporal effect of SA and try to use the appropriate data in simulation of the regional carbon budget.展开更多
Ecotones have received great attention due to its critical function in energy flux, species harbor, global carbon sequestration, and land-atmosphere interaction. This study investigated land use pattern and spatial he...Ecotones have received great attention due to its critical function in energy flux, species harbor, global carbon sequestration, and land-atmosphere interaction. This study investigated land use pattern and spatial heterogeneity of the ecotones among agricultural land, forest land, and grassland of the southeastern Da Hinggan Mountains in the northeastern China. The change of these delineated ecotones under different slopes and aridity conditions was analyzed by two landscape indices, edge density(ED) and core area percentage of landscape(CPL), to explore the inter-linkage between spatial structure of ecotones and socioeconomic development and land management. Specifically, the ecotones such as agriculture-forest(AF) ecotone, forest-grassland(FG) ecotone, and agriculture-forestgrassland(AFG) ecotone moved from the arid southeast to the humid northwest. The flat area with small slope is more edge-fragmented than the steep area since the ED decreases as the slope increases. The AF ecotone mostly found in the humid region is moving to more humid areas while the agriculture-grassland(AG) ecotone mostly found in the dry region is moving towards the drier region.展开更多
The effect of land use on soil organic carbon (SOC) stocks and depth distribution of SOC was investigated in the Lake Victoria Crescent ago-ecological zone of Uganda. Soil samples were collected from six land use ty...The effect of land use on soil organic carbon (SOC) stocks and depth distribution of SOC was investigated in the Lake Victoria Crescent ago-ecological zone of Uganda. Soil samples were collected from six land use types at 0-30, 30-60 and 60-90 cm from profile pits dug in similar soils and slopes. Results indicated that SOC stocks significantly differed across the various land use systems. SOC also varied significantly by depth. The highest SOC and pH were recorded under natural forest-strict nature. Grassland had the lowest SOC but the highest bulk density (BD). Phosphorous (P) was the highest in banana-coffee systems and the lowest under tea plantations. The lowest values of pH and BD were found in highly disturbed natural forest. The upper layers of the soil (0-30 cm) stored higher amounts of SOC compared to other depths (30-60 cm and 60-90 cm). Land use therefore has a significant effect on SOC and other soil physical and chemical properties.展开更多
Recent development in the use of the environmental radionuclide caesium-137 for documenting rates and soil redistribution on the cultivated or uncultivated land and estimating rates of sediment deposition on represent...Recent development in the use of the environmental radionuclide caesium-137 for documenting rates and soil redistribution on the cultivated or uncultivated land and estimating rates of sediment deposition on represents an important advance that overcomes many of the limitations of the conventional techniques commonly applied in such investigations. A study on soil redistribution (including soil erosion and deposition) was carried out in the Dian Lake catchment, Yunnan Province, using ^137Cs and selected chemical properties. The average soil erosion rate was 1,280.2 t km^2 yr^-1. Soil erosion rate occurring on different parts of the slope was significantly different on different parts of the slope, increasing.from the top. the bottom to the middle slope. The average soil erosion rate is also different with the land use type and that of the cultivated land (1, 672. 8 t km^-2 yr^-1) is higher than oJ the uncultivated land (1.161.2t km^-2 yr^-1 ). The result shows that landform, slope gradient and land use type are key factors that influence the size of soil erosion. In addition, we also find the SOC and TN contents and amount of the soil erosion to be correlated in the soil. With the soil erosion occurring, there are land degradation and the local eco-environmental problems, such as water eutrophication in Dian Lake.展开更多
The establishment and management of protected areas(PAs)often involve modifying traditional land use rights and changing the production and living activities of locals,which can lead to changes in the factors that dri...The establishment and management of protected areas(PAs)often involve modifying traditional land use rights and changing the production and living activities of locals,which can lead to changes in the factors that drive land use transitions.Our understanding of the spatiotemporal patterns of land use transition and the contributions of social-ecological drivers remains incomplete.In this study,we focused on the Yarlung Zangbu Grand Canyon National Park and examined how social-ecological factors influence land use transitions by developing a theoretical model of land use transitions within PAs.Our findings revealed that cropland,shrubland,grassland,and wetland experienced net losses in area,while forestland,water,ice/snow,barren land,and impervious land exhibited fluctuating growth patterns from 1985 to 2020.The net decrease in grassland was 157425.60 ha,while the net increase in forest was 140709.20 ha.The quality of land habitat increased from 0.5158 to 0.6656.Land use dominant and recessive transitions displayed varying spatial characteristics and scales across different time periods.In particular,the degree of influence of policy factors on land use dominant transition declined from 0.0800 in 1985-1990 to -0.0432 in 2010-2020,while its influence on land use recessive transition declined from 0.00058 in 1985-1990 to 0 in 2010-2020.The results show that social-ecological factors intricately influenced different types of land use transitions,leading to a shift from a balanced state to a new equilibrium.These results enhance our understanding of the spatiotemporal patterns and complex dynamics of land use transitions within PAs,providing insights and practical implications for effective land management in PAs by considering the land-human relationships.展开更多
Spatially explicit modeling techniques recently emerged as an alternative to monitor land use changes. This study adopted the well-known CLUE-S(Conversion of Land Use and its Effects at Small regional extent) model to...Spatially explicit modeling techniques recently emerged as an alternative to monitor land use changes. This study adopted the well-known CLUE-S(Conversion of Land Use and its Effects at Small regional extent) model to analyze the spatio-temporal land use changes in a hot-spot in Northeast China(NEC). In total,13 driving factors were selected to statistically analyze the spatial relationships between biophysical and socioeconomic factors and individual land use types. These relationships were then used to simulate land use dynamic changes during 1980–2010 at a 1 km spatial resolution,and to capture the overall land use change patterns. The obtained results indicate that increases in cropland area in NEC were mainly distributed in the Sanjiang Plain and the Songnen Plain during 1980–2000,with a small reduction between 2000 and 2010. An opposite pattern was identified for changes in forest areas. Forest decreases were mainly distributed in the Khingan Mountains and the Changbai Mountains between 1980 and 2000,with a slight increase during 2000–2010. The urban areas have expanded to occupy surrounding croplands and grasslands,particularly after the year 2000. More attention is needed on the newly gained croplands,which have largely replaced wetlands in the Sanjiang Plain over the last decade. Land use change patterns identified here should be considered in future policy making so as to strengthen local eco-environmental security.展开更多
文摘Plant biomass and biodiversity, element accumulation and return, water loss and soil erosion, and changesin soil properties were studied for up to 10 years after conversion of sparse tree-shrubby grass land into thefollowing four land use patterns: masson pine (Pznvs massonzana Lamb.) land, beautiful sweetgum (Ltq-uidambar fomosana Hance) land, vegetation reservation land, and artificial mowing land. The annualbiomass production of the masson pine land was 5060 kg ha ̄-1 being 4.9, 2.1, and 6.0 times that of the beau-tiful sweetgum land, the vegetation reservation land, and the artificial mowing land, respectively. Comparedwith the background values, the number of plant species for the vegetation reservation land increased by 10species after 10 years of land utilization, while for the masson pine and the beautiful sweetgum decreased by4, and for the artificial mowing land by 9. For masson pine land, total amount of N, P, K, Ca, and Mg neededfor producing 1000 kg dry matter was only 3.5 kg, annual element return through litter was 22 kg ha ̄-1, bothof which were much lower than those of the other patterns. Vegetation reservation was an effective measureto conserve soil and water and improve soil fertility in the red soil hilly region. Artificial mowing arousedserious degradation of vegetation and soil. Some measures and suggestions for management and exploitationof the red soil hilly region such as masson pine planting, closing hills for afforestation, and stereo-agricultureon one hill are proposed.
基金Supported by Science Research Foundation of the Education Department of Yunnan Province(2014J089)~~
文摘Scientific analysis and determination of land use lays foundation for regional sustainable development under the background of new urbanization. The research made a comprehensive analysis on land uses in Yunnan under the background of urbanization and proposed strategies for further development, providing references for land uses scientific decision making.
基金financial support from National Natural Science Foundation of China(Grants No.41271433,41571373,41301385)the International Cooperation Key Project of CAS(Grant No.GJHZ201320)+3 种基金the International Cooperation Partner Program of Innovative Team,CAS(Grant No.KZZD-EW-TZ-06)STS-Network Plan,CAS(KFJ-EW-STS-020-02)the Strategic Leader Science and Technology project(XDA05050105)“Hundred Talents”Project of Chinese Academy of Sciences
文摘Although mathematical models(e.g., De Nitrification and De Composition(DNDC) provide a powerful tool to study regional carbon budget, it is still difficult to obtain accurate simulation results because there exists large uncertainties in modeling regional carbon budget. Through the investigation on the sensitivity of model output parameters to the input parameters, sensitivity analysis(SA) has been proved to be able to identify the key sources of uncertainties and be helpful to reduce the model uncertainties. However, some input parameters with discrete values(e.g., land use type and soil type) and the regional effect of the sensitive parameters were rarely examined in SA. In this paper, taking the Zoige Plateau as a case area, we combined the one-factor-ata-time(OAT) with Extended Fourier Amplitude Sensitivity Test(EFAST) to conduct a SA of DNDC for simulating the regional carbon budget, including Gross Primary Productivity(GPP), Net Primary Productivity(NPP), Net Ecosystem Productivity(NEP), autotrophic respiration(Ra), soil microbial heterotrophic respiration(Rh) and ecosystem respiration(Re). The result showed that the combination of OAT and EFAST could test the contribution of the input parameters with discrete values to the output parameters. In DNDC model, land use type and soil type had a significant impact on the regional carbon budget of the Zoige Plateau, and daily temperature was also confirmed to be one of the most important parameters for carbon budget. For the other input parameters, with the change of land use type or soil type at regional scale, the sensitive parameters of carbon budget would vary accordingly. The SA results would provide scientific evidence to optimize DNDC model and they suggested that we should pay attention to the spatial/temporal effect of SA and try to use the appropriate data in simulation of the regional carbon budget.
基金Under the auspices of'Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues'of Chinese Academy of Sciences(No.XDA05090310)
文摘Ecotones have received great attention due to its critical function in energy flux, species harbor, global carbon sequestration, and land-atmosphere interaction. This study investigated land use pattern and spatial heterogeneity of the ecotones among agricultural land, forest land, and grassland of the southeastern Da Hinggan Mountains in the northeastern China. The change of these delineated ecotones under different slopes and aridity conditions was analyzed by two landscape indices, edge density(ED) and core area percentage of landscape(CPL), to explore the inter-linkage between spatial structure of ecotones and socioeconomic development and land management. Specifically, the ecotones such as agriculture-forest(AF) ecotone, forest-grassland(FG) ecotone, and agriculture-forestgrassland(AFG) ecotone moved from the arid southeast to the humid northwest. The flat area with small slope is more edge-fragmented than the steep area since the ED decreases as the slope increases. The AF ecotone mostly found in the humid region is moving to more humid areas while the agriculture-grassland(AG) ecotone mostly found in the dry region is moving towards the drier region.
文摘The effect of land use on soil organic carbon (SOC) stocks and depth distribution of SOC was investigated in the Lake Victoria Crescent ago-ecological zone of Uganda. Soil samples were collected from six land use types at 0-30, 30-60 and 60-90 cm from profile pits dug in similar soils and slopes. Results indicated that SOC stocks significantly differed across the various land use systems. SOC also varied significantly by depth. The highest SOC and pH were recorded under natural forest-strict nature. Grassland had the lowest SOC but the highest bulk density (BD). Phosphorous (P) was the highest in banana-coffee systems and the lowest under tea plantations. The lowest values of pH and BD were found in highly disturbed natural forest. The upper layers of the soil (0-30 cm) stored higher amounts of SOC compared to other depths (30-60 cm and 60-90 cm). Land use therefore has a significant effect on SOC and other soil physical and chemical properties.
基金sponsored by the fund on soil ero-sion and silt source of Dian Lake catchment (Grant No. 40473052).
文摘Recent development in the use of the environmental radionuclide caesium-137 for documenting rates and soil redistribution on the cultivated or uncultivated land and estimating rates of sediment deposition on represents an important advance that overcomes many of the limitations of the conventional techniques commonly applied in such investigations. A study on soil redistribution (including soil erosion and deposition) was carried out in the Dian Lake catchment, Yunnan Province, using ^137Cs and selected chemical properties. The average soil erosion rate was 1,280.2 t km^2 yr^-1. Soil erosion rate occurring on different parts of the slope was significantly different on different parts of the slope, increasing.from the top. the bottom to the middle slope. The average soil erosion rate is also different with the land use type and that of the cultivated land (1, 672. 8 t km^-2 yr^-1) is higher than oJ the uncultivated land (1.161.2t km^-2 yr^-1 ). The result shows that landform, slope gradient and land use type are key factors that influence the size of soil erosion. In addition, we also find the SOC and TN contents and amount of the soil erosion to be correlated in the soil. With the soil erosion occurring, there are land degradation and the local eco-environmental problems, such as water eutrophication in Dian Lake.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20020302)The Second Tibetan Plateau Scientific Expeditionand Research Program(2019QZKK0406).
文摘The establishment and management of protected areas(PAs)often involve modifying traditional land use rights and changing the production and living activities of locals,which can lead to changes in the factors that drive land use transitions.Our understanding of the spatiotemporal patterns of land use transition and the contributions of social-ecological drivers remains incomplete.In this study,we focused on the Yarlung Zangbu Grand Canyon National Park and examined how social-ecological factors influence land use transitions by developing a theoretical model of land use transitions within PAs.Our findings revealed that cropland,shrubland,grassland,and wetland experienced net losses in area,while forestland,water,ice/snow,barren land,and impervious land exhibited fluctuating growth patterns from 1985 to 2020.The net decrease in grassland was 157425.60 ha,while the net increase in forest was 140709.20 ha.The quality of land habitat increased from 0.5158 to 0.6656.Land use dominant and recessive transitions displayed varying spatial characteristics and scales across different time periods.In particular,the degree of influence of policy factors on land use dominant transition declined from 0.0800 in 1985-1990 to -0.0432 in 2010-2020,while its influence on land use recessive transition declined from 0.00058 in 1985-1990 to 0 in 2010-2020.The results show that social-ecological factors intricately influenced different types of land use transitions,leading to a shift from a balanced state to a new equilibrium.These results enhance our understanding of the spatiotemporal patterns and complex dynamics of land use transitions within PAs,providing insights and practical implications for effective land management in PAs by considering the land-human relationships.
基金National Natural Science Foundation of China No.41201089No.41271112+3 种基金The Fundamental Research Funds for the Central UniversitiesNo.CCNU15A05058National Nonprofit Institute Research Grant of CAASNo.IARRP-2015-28
文摘Spatially explicit modeling techniques recently emerged as an alternative to monitor land use changes. This study adopted the well-known CLUE-S(Conversion of Land Use and its Effects at Small regional extent) model to analyze the spatio-temporal land use changes in a hot-spot in Northeast China(NEC). In total,13 driving factors were selected to statistically analyze the spatial relationships between biophysical and socioeconomic factors and individual land use types. These relationships were then used to simulate land use dynamic changes during 1980–2010 at a 1 km spatial resolution,and to capture the overall land use change patterns. The obtained results indicate that increases in cropland area in NEC were mainly distributed in the Sanjiang Plain and the Songnen Plain during 1980–2000,with a small reduction between 2000 and 2010. An opposite pattern was identified for changes in forest areas. Forest decreases were mainly distributed in the Khingan Mountains and the Changbai Mountains between 1980 and 2000,with a slight increase during 2000–2010. The urban areas have expanded to occupy surrounding croplands and grasslands,particularly after the year 2000. More attention is needed on the newly gained croplands,which have largely replaced wetlands in the Sanjiang Plain over the last decade. Land use change patterns identified here should be considered in future policy making so as to strengthen local eco-environmental security.