Soil moisture is an important factor in global hydrologic circulation and plays a significant role in the research of hydrology, climatology, and agriculture. Microwave remote sensing is less limited by climate and ti...Soil moisture is an important factor in global hydrologic circulation and plays a significant role in the research of hydrology, climatology, and agriculture. Microwave remote sensing is less limited by climate and time, and can measure in large scale. With these characteristics, this technique becomes an effective tool to measure soil moisture. Since the 1980s, Chinese researchers have investigated the soil moisture using microwave instruments. The active re- mote sensors are characteristic of high spatial resolution, thus with launch of a series of satellites, active microwave remote sensing of soil moisture will be emphasized. The passive microwave remote sensing of soil moisture has a long research history, and its retrieval algorithms were developed well, so it is an important tool to retrieve large scale moisture information from satellite data in the future.展开更多
A study was conducted in a hilly area of Sichuan Province,Southwestern China, to compare the streamflow and soil moisture in two upland watersheds with different land use patterns. One was an agroforestry watershed, w...A study was conducted in a hilly area of Sichuan Province,Southwestern China, to compare the streamflow and soil moisture in two upland watersheds with different land use patterns. One was an agroforestry watershed, which consisted mainly of trees with alder (Alnus cremastogyne Burkill) and cypress (Cupressus funebris Endl.) planted in belts or strips with a coverage of about 46%, and the other was a grassland primarily composed of lalang grass (Imperata cylindrica var. major (Nees) C. E. Hubb.), filamentary clematis (Clematis filamentosa Dunn) and common eulaliopsis (Eulaliopsis binata (Retz.) C. E. Hubb) with a coverage of about 44%. Streamflow measurement with a hydrograph established at the watershed outlet showed that the average annual streamflow per 100 mm rainfall from 1983 to 1992 was 0.36 and 1.08 L s-1 km-2 for the agroforestry watershed and the grass watershed, respectively. This showed that the streamflow of the agroforestry watershed was reduced by 67% when compared to that of the grass watershed. The peak average monthly streamflow in the agroforestry watershed was over 5 times lower than that of the grass watershed and lagged by one month. In addition, the peak streamflow during a typical rainfall event of 38.3 mm in August 1986 was 37% lower in the agroforestry watershed than in the grass watershed. Results of the moisture contents of the soil samples from 3 slope locations (upper, middle and lower slopes) indicated that the agroforestry watershed maintained generally higher soil moisture contents than the grass watershed within 0-20 and 20-80 cm soil depths for the upper slope, especially for the period from May through July. For the other (middle and lower) slopes, soil moisture contents within 20-80 cm depth in the agroforestry watershed was generally lower than those in the grass watershed, particularly in September, revealing that water consumption by trees took place mainly below the plow layer. Therefore, agroforestry land use types might offer a complimentary model for tree-annual crop water utilization.展开更多
基金Under the auspices of Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-309)
文摘Soil moisture is an important factor in global hydrologic circulation and plays a significant role in the research of hydrology, climatology, and agriculture. Microwave remote sensing is less limited by climate and time, and can measure in large scale. With these characteristics, this technique becomes an effective tool to measure soil moisture. Since the 1980s, Chinese researchers have investigated the soil moisture using microwave instruments. The active re- mote sensors are characteristic of high spatial resolution, thus with launch of a series of satellites, active microwave remote sensing of soil moisture will be emphasized. The passive microwave remote sensing of soil moisture has a long research history, and its retrieval algorithms were developed well, so it is an important tool to retrieve large scale moisture information from satellite data in the future.
基金Project supported by the Innovation Project of the Chinese Academy of Sciences (Nos. KZCX3-SW-330 and KZCX2-413) and the National Natural Science Youth Foundation of China (No. 40201029).
文摘A study was conducted in a hilly area of Sichuan Province,Southwestern China, to compare the streamflow and soil moisture in two upland watersheds with different land use patterns. One was an agroforestry watershed, which consisted mainly of trees with alder (Alnus cremastogyne Burkill) and cypress (Cupressus funebris Endl.) planted in belts or strips with a coverage of about 46%, and the other was a grassland primarily composed of lalang grass (Imperata cylindrica var. major (Nees) C. E. Hubb.), filamentary clematis (Clematis filamentosa Dunn) and common eulaliopsis (Eulaliopsis binata (Retz.) C. E. Hubb) with a coverage of about 44%. Streamflow measurement with a hydrograph established at the watershed outlet showed that the average annual streamflow per 100 mm rainfall from 1983 to 1992 was 0.36 and 1.08 L s-1 km-2 for the agroforestry watershed and the grass watershed, respectively. This showed that the streamflow of the agroforestry watershed was reduced by 67% when compared to that of the grass watershed. The peak average monthly streamflow in the agroforestry watershed was over 5 times lower than that of the grass watershed and lagged by one month. In addition, the peak streamflow during a typical rainfall event of 38.3 mm in August 1986 was 37% lower in the agroforestry watershed than in the grass watershed. Results of the moisture contents of the soil samples from 3 slope locations (upper, middle and lower slopes) indicated that the agroforestry watershed maintained generally higher soil moisture contents than the grass watershed within 0-20 and 20-80 cm soil depths for the upper slope, especially for the period from May through July. For the other (middle and lower) slopes, soil moisture contents within 20-80 cm depth in the agroforestry watershed was generally lower than those in the grass watershed, particularly in September, revealing that water consumption by trees took place mainly below the plow layer. Therefore, agroforestry land use types might offer a complimentary model for tree-annual crop water utilization.