Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial var...Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial variability of soil pH, and compare the efficiency of managing soil pH through site-specific method vs. uniform lime application. The study was conducted on three sites with study sites I and II (23°50' S; 29°40' E), and study sites IIl (23°59' S; 28°52' E) adjacent to each other in the semi-arid regions of the Limpopo Province, South Africa. Soil samples were taken in four replicates from geo-referenced locations on a regular grid of 30 m. Soils were analyzed for pH, and SMP buffer pH. Soil maps were produced with Geographic Information System (GIS) software, and soil pH datasets were interpolated using a geostatistical tool of inverse distance weighing (IDW). Soil pH in the fields varied from 3.93 to 7.00. An excess amount of lime as high as 30 t/ha under uniform lime application were recorded. These recommendations were in excess on field areas that needed little or no lime applications. Again, there was an under applications of lime as much as 35 t/ha for uniform liming applications. This under- and over-recommendations of lime based on average soil pH values suggests that uniform soil acidity correction and soil pH management strategy is not an appropriate strategy to be adopted in these fields with spatially variable soils. The field can be divided into lime application zones of (1) high rates of lime, (2) low rates of lime and (3) areas that requires no lime at all so that lime rates are applied per zone. A key to site-specific soil acidity correction with lime is to reach ideal soil pH for the crop in all parts of the field.展开更多
Abstract: Loess-paleosol sequences preserve records of climatic change during the Quaternary, which is important for paleoclimate study. In this study, a loess-palaeosol sequence from the Chumbur- Kosa (CK) site in...Abstract: Loess-paleosol sequences preserve records of climatic change during the Quaternary, which is important for paleoclimate study. In this study, a loess-palaeosol sequence from the Chumbur- Kosa (CK) site in the Sea of Azov region was investigated to reconstruct climatic variability during the Marine Isotope Stage (MIS)11- MIS 1, using proxies of grain size (GS), magnetic susceptibility (xlf and Xfd(%)), carbonate content (CaCO3%) and soil color The results enabled formulation of a detailed description of the climatic characteristics related to each individual layer. The sequence indicates that the paleoclimate shifted progressively towards increasingly cooler, somewhat drier conditions. The CK section may thus be ideal for reconstructing climatie eondifions during the Middle and Late Pleistocene in the Sea of Azov region. However, the )Of value of paleosol $2 in the CK profile indicates different characteristics from the other paleosol layers, dilution of carbonate resulting from carbonate leaching in L2 may be the main reason for the decrease in magnetic susceptibility. Furthermore, through simple analysis part of the environmental evolution process in the Sea of Azov region and Serbia during Middle and Late Pleistocene cycles. The climate cycle expressed by Xfd(%) and Xlf variations show similar patterns, with rapidly alternating cold and warm intervals. Nevertheless, although the two areas had different climatic regimes, geographical settings, and loess source areas, both exhibited similar climate change trends since the MIS 11.展开更多
文摘Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial variability of soil pH, and compare the efficiency of managing soil pH through site-specific method vs. uniform lime application. The study was conducted on three sites with study sites I and II (23°50' S; 29°40' E), and study sites IIl (23°59' S; 28°52' E) adjacent to each other in the semi-arid regions of the Limpopo Province, South Africa. Soil samples were taken in four replicates from geo-referenced locations on a regular grid of 30 m. Soils were analyzed for pH, and SMP buffer pH. Soil maps were produced with Geographic Information System (GIS) software, and soil pH datasets were interpolated using a geostatistical tool of inverse distance weighing (IDW). Soil pH in the fields varied from 3.93 to 7.00. An excess amount of lime as high as 30 t/ha under uniform lime application were recorded. These recommendations were in excess on field areas that needed little or no lime applications. Again, there was an under applications of lime as much as 35 t/ha for uniform liming applications. This under- and over-recommendations of lime based on average soil pH values suggests that uniform soil acidity correction and soil pH management strategy is not an appropriate strategy to be adopted in these fields with spatially variable soils. The field can be divided into lime application zones of (1) high rates of lime, (2) low rates of lime and (3) areas that requires no lime at all so that lime rates are applied per zone. A key to site-specific soil acidity correction with lime is to reach ideal soil pH for the crop in all parts of the field.
基金supported by the National Natural Science Foundation of China(Grant No.41271024)International Cooperation and Exchanges Project(The record of landscape changes in Eurasian arid and semi-arid regions by loess-paleosol sequence of southern Russian on the million scales and its comparative study with Chinese loess(Grant No.No.41411130204)
文摘Abstract: Loess-paleosol sequences preserve records of climatic change during the Quaternary, which is important for paleoclimate study. In this study, a loess-palaeosol sequence from the Chumbur- Kosa (CK) site in the Sea of Azov region was investigated to reconstruct climatic variability during the Marine Isotope Stage (MIS)11- MIS 1, using proxies of grain size (GS), magnetic susceptibility (xlf and Xfd(%)), carbonate content (CaCO3%) and soil color The results enabled formulation of a detailed description of the climatic characteristics related to each individual layer. The sequence indicates that the paleoclimate shifted progressively towards increasingly cooler, somewhat drier conditions. The CK section may thus be ideal for reconstructing climatie eondifions during the Middle and Late Pleistocene in the Sea of Azov region. However, the )Of value of paleosol $2 in the CK profile indicates different characteristics from the other paleosol layers, dilution of carbonate resulting from carbonate leaching in L2 may be the main reason for the decrease in magnetic susceptibility. Furthermore, through simple analysis part of the environmental evolution process in the Sea of Azov region and Serbia during Middle and Late Pleistocene cycles. The climate cycle expressed by Xfd(%) and Xlf variations show similar patterns, with rapidly alternating cold and warm intervals. Nevertheless, although the two areas had different climatic regimes, geographical settings, and loess source areas, both exhibited similar climate change trends since the MIS 11.