Satellite-derived land surface data in 1980 and 2010 were used to represent land use and land cover(LULC) changes caused by the rapid economic development and human activities that have occurred over the past few de...Satellite-derived land surface data in 1980 and 2010 were used to represent land use and land cover(LULC) changes caused by the rapid economic development and human activities that have occurred over the past few decades in East Asia and China. The effects of LULC changes on the radiation budget and 2-m surface air temperature(SAT) were explored for the period using the Weather Research and Forecasting(WRF) model. The mosaic approach, which considers the N-most abundant land use types within a model grid cell(here, N = 3) and precisely describes the subgridscale LULC changes, was adopted in the integrations. The impacts of LULC changes based on two 36-year integrations showed that SAT generally decreased, with the sole exception being over eastern China, resulting in decreased SAT in China(-0.062 °C) and East Asian land areas(EAL,-0.061 °C). The LULC changes induced changes in albedo, which influenced the radiation budget. The radiative forcings at the top of the atmosphere were-0.56 W m-2 across the whole of China, and-0.50 W m-2 over EAL. Meanwhile, the altered roughness length mainly influenced near-surface wind speeds, large-scale and upward moisture fluxes, latent heat fluxes, and cloud fractions at different altitudes. Though the impacts caused by the LULC changes were generally smaller at regional scales, the values at local scales were much stronger.展开更多
Anthropogenic activities and natural processes are continuously altering the mountainous environment through deforestation, forest degradation and other land-use changes. It is highly important to assess, monitor and ...Anthropogenic activities and natural processes are continuously altering the mountainous environment through deforestation, forest degradation and other land-use changes. It is highly important to assess, monitor and forecast forest cover and other land-use changes for the protection and conservation of mountainous environment. The present study deals with the assessment of forest cover and other land-use changes in the mountain ranges of Dir Kohistan in northern Pakistan, using high resolution multi-temporal SPOT-5 satellite images. The SPOT-5 satellite images of years 2004, 2007, 2010 and 2013 were acquired and classified into land-cover units. In addition, forest cover and land-use change detection map was developed using the classified maps of 2004 and 2013. The classified maps were verified through random field samples and Google Earth imagery(Quick birds and SPOT-5). The results showed that during the period 2004 to 2013 the area of forest land decreased by 6.4%, however, area of range land and agriculture land have increased by 22.1% and 2.9%, respectively. Similarly, barren land increased by 1.1%, whereas, area of snow cover/glacier is significantly decreased by 21.3%. The findings from the study will be useful for forestry and landscape planning and can be utilized by the local, provincial and national forest departments; and REDD+ policy makers in Pakistan.展开更多
基金supported by the National Natural Science Foun-dation of China[grant numbers 41775087 and 41675149]the National Key R&D Program of China[grant number 2016YFA0600403]+2 种基金the Chinese Academy of Sciences Strategic Priority Program[grant number XDA05090206]the National Key Basic Research Program on Global Change[grant number 2011CB952003]the Jiangsu Collaborative Innovation Center for Climatic Change
文摘Satellite-derived land surface data in 1980 and 2010 were used to represent land use and land cover(LULC) changes caused by the rapid economic development and human activities that have occurred over the past few decades in East Asia and China. The effects of LULC changes on the radiation budget and 2-m surface air temperature(SAT) were explored for the period using the Weather Research and Forecasting(WRF) model. The mosaic approach, which considers the N-most abundant land use types within a model grid cell(here, N = 3) and precisely describes the subgridscale LULC changes, was adopted in the integrations. The impacts of LULC changes based on two 36-year integrations showed that SAT generally decreased, with the sole exception being over eastern China, resulting in decreased SAT in China(-0.062 °C) and East Asian land areas(EAL,-0.061 °C). The LULC changes induced changes in albedo, which influenced the radiation budget. The radiative forcings at the top of the atmosphere were-0.56 W m-2 across the whole of China, and-0.50 W m-2 over EAL. Meanwhile, the altered roughness length mainly influenced near-surface wind speeds, large-scale and upward moisture fluxes, latent heat fluxes, and cloud fractions at different altitudes. Though the impacts caused by the LULC changes were generally smaller at regional scales, the values at local scales were much stronger.
基金akistan Space and Upper Atmospheric Research Commission(SUPARCO),for the provision of SPOT satellite imagesnational center of excellence in Geology(NCEG)+1 种基金University of Peshawar and Department of ForestryShaheed Benazir Bhutto University,Sheringal
文摘Anthropogenic activities and natural processes are continuously altering the mountainous environment through deforestation, forest degradation and other land-use changes. It is highly important to assess, monitor and forecast forest cover and other land-use changes for the protection and conservation of mountainous environment. The present study deals with the assessment of forest cover and other land-use changes in the mountain ranges of Dir Kohistan in northern Pakistan, using high resolution multi-temporal SPOT-5 satellite images. The SPOT-5 satellite images of years 2004, 2007, 2010 and 2013 were acquired and classified into land-cover units. In addition, forest cover and land-use change detection map was developed using the classified maps of 2004 and 2013. The classified maps were verified through random field samples and Google Earth imagery(Quick birds and SPOT-5). The results showed that during the period 2004 to 2013 the area of forest land decreased by 6.4%, however, area of range land and agriculture land have increased by 22.1% and 2.9%, respectively. Similarly, barren land increased by 1.1%, whereas, area of snow cover/glacier is significantly decreased by 21.3%. The findings from the study will be useful for forestry and landscape planning and can be utilized by the local, provincial and national forest departments; and REDD+ policy makers in Pakistan.