期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于线性光谱混合模型分解MODIS多光谱影像的研究 被引量:3
1
作者 陆广勇 杨勤科 +1 位作者 张少伟 王海江 《水土保持研究》 CSCD 北大核心 2011年第3期10-14,0+2,共5页
为了获取多时相的土地覆盖基础数据以支持区域土壤侵蚀定量评价,基于线性光谱混合模型分解MODIS多光谱影像,并对分解结果进行了定性、定量评价。结果表明,结合像元年内植被指数变化特征,基于线性混合像元分解,可解译出耕地、林地、草地... 为了获取多时相的土地覆盖基础数据以支持区域土壤侵蚀定量评价,基于线性光谱混合模型分解MODIS多光谱影像,并对分解结果进行了定性、定量评价。结果表明,结合像元年内植被指数变化特征,基于线性混合像元分解,可解译出耕地、林地、草地、裸地、水体、居民地等类型。分类结果与2006年TM分类结果的总体一致性为64.46%,Kappa系数为0.519 9,土地覆盖类型分类结果可靠;各类端元估算误差基本小于20%,且与对应TM分类结果具有相关性,总体精度较好;林地端元能够较好地反映植被盖度信息。基于LSMM分解MODIS影像可为区域环境研究提供可靠的土地覆盖类型图和植被覆盖信息。 展开更多
关键词 线性混合像元分解 土地覆盖类型分类 MODIS 精度评价
下载PDF
Integrating TM and Ancillary Geographical Data with Classification Trees for Land Cover Classification of Marsh Area 被引量:14
2
作者 NA Xiaodong ZHANG Shuqing +3 位作者 ZHANG Huaiqing LI Xiaofeng YU Huan LIU Chunyue 《Chinese Geographical Science》 SCIE CSCD 2009年第2期177-185,共9页
The main objective of this research is to determine the capacity of land cover classification combining spec- tral and textural features of Landsat TM imagery with ancillary geographical data in wetlands of the Sanjia... The main objective of this research is to determine the capacity of land cover classification combining spec- tral and textural features of Landsat TM imagery with ancillary geographical data in wetlands of the Sanjiang Plain, Heilongjiang Province, China. Semi-variograms and Z-test value were calculated to assess the separability of grey-level co-occurrence texture measures to maximize the difference between land cover types. The degree of spatial autocorrelation showed that window sizes of 3×3 pixels and 11×11 pixels were most appropriate for Landsat TM im- age texture calculations. The texture analysis showed that co-occurrence entropy, dissimilarity, and variance texture measures, derived from the Landsat TM spectrum bands and vegetation indices provided the most significant statistical differentiation between land cover types. Subsequently, a Classification and Regression Tree (CART) algorithm was applied to three different combinations of predictors: 1) TM imagery alone (TM-only); 2) TM imagery plus image texture (TM+TXT model); and 3) all predictors including TM imagery, image texture and additional ancillary GIS in- formation (TM+TXT+GIS model). Compared with traditional Maximum Likelihood Classification (MLC) supervised classification, three classification trees predictive models reduced the overall error rate significantly. Image texture measures and ancillary geographical variables depressed the speckle noise effectively and reduced classification error rate of marsh obviously. For classification trees model making use of all available predictors, omission error rate was 12.90% and commission error rate was 10.99% for marsh. The developed method is portable, relatively easy to im- plement and should be applicable in other settings and over larger extents. 展开更多
关键词 land cover classification classification trees Landsat TM ancillary geographical data MARSH
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部