Non-point source(NPS) pollution has become a major source of water pollution. A combination of models would provide the necessary direction and approaches designed to control NPS pollution through land use planning. I...Non-point source(NPS) pollution has become a major source of water pollution. A combination of models would provide the necessary direction and approaches designed to control NPS pollution through land use planning. In this study, NPS pollution load was simulated in urban planning, historic trends and ecological protection land use scenarios based on the Conversion of Land Use and its Effect at Small regional extent(CLUE-S) and Soil and Water Assessment Tool(SWAT) models applied to Hunhe-Taizi River Watershed, Liaoning Province, China. Total nitrogen(TN) and total phosphorus(TP) were chosen as NPS pollution indices. The results of models validation showed that CLUE-S and SWAT models were suitable in the study area. NPS pollution mainly came from dry farmland, paddy, rural and urban areas. The spatial distribution of TN and TP exhibited the same trend in 57 sub-catchments. The TN and TP had the highest NPS pollution load in the western and central plains, which concentrated the urban area and farm land. The NPS pollution load would increase in the urban planning and historic trends scenarios, and would be even higher in the urban planning scenario. However, the NPS pollution load decreased in the ecological protection scenario. The differences observed in the three scenarios indicated that land use had a degree of impact on NPS pollution, which showed that scientific and ecologically sound construction could effectively reduce the NPS pollution load in a watershed. This study provides a scientific method for conducting NPS pollution research at the watershed scale, a scientific basis for non-point source pollution control, and a reference for related policy making.展开更多
Based on the exploring of SWAT model suitability in Hei River Basin, this paper analyze quantitatively and compare non-point source pollution loads occurred under different land use scene. At last, the following concl...Based on the exploring of SWAT model suitability in Hei River Basin, this paper analyze quantitatively and compare non-point source pollution loads occurred under different land use scene. At last, the following conclusion can be attained: (1) Land use change exerts tremendous influence on non-point source pollution. Since forest land can save water and reduce soil loss, which decreases greatly the source of non-point source pollution; (2) Strengthening land management and promoting reasonable land use, especially the over 15 degree slope farmland, will be the effective measure to control non-point source pollution and protect the quality of water in the Hei River basin; (3) The best land use situation in Hei River basin should be like the following modes: complying with national water source protection policy, gradual evacuation of river basin population, returning all the sloping farmland which is above 15 degree to forest land, allowing the existence of few farming land below 15 slope degree on the premise that the drinking water quality standard is reached, no unused land, good vegetation covering situation. At then, total nitrogen load is 13.25 kg, total phosphate load is 3.29 kg, which means it will not contaminate展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41171155,40801069)National Science and Technology Major Project of China:Water Pollution Control and Governance(No.2012ZX07505-003)
文摘Non-point source(NPS) pollution has become a major source of water pollution. A combination of models would provide the necessary direction and approaches designed to control NPS pollution through land use planning. In this study, NPS pollution load was simulated in urban planning, historic trends and ecological protection land use scenarios based on the Conversion of Land Use and its Effect at Small regional extent(CLUE-S) and Soil and Water Assessment Tool(SWAT) models applied to Hunhe-Taizi River Watershed, Liaoning Province, China. Total nitrogen(TN) and total phosphorus(TP) were chosen as NPS pollution indices. The results of models validation showed that CLUE-S and SWAT models were suitable in the study area. NPS pollution mainly came from dry farmland, paddy, rural and urban areas. The spatial distribution of TN and TP exhibited the same trend in 57 sub-catchments. The TN and TP had the highest NPS pollution load in the western and central plains, which concentrated the urban area and farm land. The NPS pollution load would increase in the urban planning and historic trends scenarios, and would be even higher in the urban planning scenario. However, the NPS pollution load decreased in the ecological protection scenario. The differences observed in the three scenarios indicated that land use had a degree of impact on NPS pollution, which showed that scientific and ecologically sound construction could effectively reduce the NPS pollution load in a watershed. This study provides a scientific method for conducting NPS pollution research at the watershed scale, a scientific basis for non-point source pollution control, and a reference for related policy making.
基金This study was supported by the project of National Natural Science Foundation of china (No. 90610030).
文摘Based on the exploring of SWAT model suitability in Hei River Basin, this paper analyze quantitatively and compare non-point source pollution loads occurred under different land use scene. At last, the following conclusion can be attained: (1) Land use change exerts tremendous influence on non-point source pollution. Since forest land can save water and reduce soil loss, which decreases greatly the source of non-point source pollution; (2) Strengthening land management and promoting reasonable land use, especially the over 15 degree slope farmland, will be the effective measure to control non-point source pollution and protect the quality of water in the Hei River basin; (3) The best land use situation in Hei River basin should be like the following modes: complying with national water source protection policy, gradual evacuation of river basin population, returning all the sloping farmland which is above 15 degree to forest land, allowing the existence of few farming land below 15 slope degree on the premise that the drinking water quality standard is reached, no unused land, good vegetation covering situation. At then, total nitrogen load is 13.25 kg, total phosphate load is 3.29 kg, which means it will not contaminate