[Objective] The aim was to discuss the spatial pattern changes of land use in Tianjin new coastal area based on fractal dimensions.[Method] By dint of remote and geographic information system technology to obtain the ...[Objective] The aim was to discuss the spatial pattern changes of land use in Tianjin new coastal area based on fractal dimensions.[Method] By dint of remote and geographic information system technology to obtain the data of urban land use in new coastal area from 1993 to 2008,the boundary dimension,radius dimension and information dimension of each land use type were calculated based on fractal dimension.In addition,the revealed land use spatial dimension changes characteristics were analyzed.[Result] The spatial distribution of each land use type in new costal area had distinct fractal characteristics.And,the amount and changes of three types of dimension values effectively revealed the changes of complicatedness,centeredness and evenness of spatial pattern of land use in the study area.The boundary dimension of unused land and salty earth increased incessantly,which suggested its increasing complicatedness.The boundary of the port and wharf and shoal land was getting simpler.The radius dimension of the cultivated land was larger than 2,which suggested that its area spread from center to the surroundings;the one in salty land and waters distributed evenly within different radius space to the center of the city;the one in other land use types reduced gradually from center to the surroundings.The information dimension value in the woodland and orchard land,unused land and shoal land was small,and was in obvious concentrated distribution;the spatial distribution of cultivated and salty land concentrated in the outside area;the construction area in the port and wharf spread gradually on the basis of original state;the spatial distribution of waters and residents and mines were even.[Conclusion] Applying fractal dimensions to the study of spatial pattern changes of urban land use can make up for some disadvantages in classical urban spatial pattern quantitative research,which has favorable practical value.展开更多
Soil moisture has a significant influence on water, energy, and carbon biogeochemical cycles. A numerical method for solving Richards' equation is usually used for simulating soil moisture. Selection of a lower bound...Soil moisture has a significant influence on water, energy, and carbon biogeochemical cycles. A numerical method for solving Richards' equation is usually used for simulating soil moisture. Selection of a lower boundary condition for Richards' equation will further affect the simulation results for soil moisture, water cycle, energy balance, and carbon biogeochemical processes. In this study, the soil water movement dynamic sub-model of a hydrologically based land surface model, the variable infiltration capacity (VIC) model, was modified using the finite difference method (FDM) to solve a mixed form of Richards' equation. In addition, the VIC model was coupled with a terrestrial biogeochemical model, the Carnegie Ames Stanford Approach model of carbon, nitrogen, and phosphorus (CASACNP model). The no-flux boundary (NB) and free-drainage boundary (FB) were selected to investigate their impacts on simulations of the water, energy, and soil carbon cycles based on the coupling model. The NB and FB had different influences on the water, energy, and soil carbon simulations. The water and energy simulations were more sensitive, while the soil carbon simulation was less sensitive to FB than to NB. Free-drainage boundary could result in lower soil moisture, evaporation, runoff, and heterotrophic respiration and higher surface soil temperature, sensible heat flux, and soil carbon content. The impact of the lower boundary condition on simulation would be greater with an increase in soil permeability. In the silt loam soil case, evaporation, runoff, and soil respiration of FB were nearly 169, 13%, and 1% smaller, respectively, compared to those of NB.展开更多
基金Supported by National Natural Science Fund Program(40705038)~~
文摘[Objective] The aim was to discuss the spatial pattern changes of land use in Tianjin new coastal area based on fractal dimensions.[Method] By dint of remote and geographic information system technology to obtain the data of urban land use in new coastal area from 1993 to 2008,the boundary dimension,radius dimension and information dimension of each land use type were calculated based on fractal dimension.In addition,the revealed land use spatial dimension changes characteristics were analyzed.[Result] The spatial distribution of each land use type in new costal area had distinct fractal characteristics.And,the amount and changes of three types of dimension values effectively revealed the changes of complicatedness,centeredness and evenness of spatial pattern of land use in the study area.The boundary dimension of unused land and salty earth increased incessantly,which suggested its increasing complicatedness.The boundary of the port and wharf and shoal land was getting simpler.The radius dimension of the cultivated land was larger than 2,which suggested that its area spread from center to the surroundings;the one in salty land and waters distributed evenly within different radius space to the center of the city;the one in other land use types reduced gradually from center to the surroundings.The information dimension value in the woodland and orchard land,unused land and shoal land was small,and was in obvious concentrated distribution;the spatial distribution of cultivated and salty land concentrated in the outside area;the construction area in the port and wharf spread gradually on the basis of original state;the spatial distribution of waters and residents and mines were even.[Conclusion] Applying fractal dimensions to the study of spatial pattern changes of urban land use can make up for some disadvantages in classical urban spatial pattern quantitative research,which has favorable practical value.
基金supported by the National Science Foundation for Distinguished Young Scholars of China (No. 51309245)supported by the US Department of Energy and National Aeronautics and Space Administration
文摘Soil moisture has a significant influence on water, energy, and carbon biogeochemical cycles. A numerical method for solving Richards' equation is usually used for simulating soil moisture. Selection of a lower boundary condition for Richards' equation will further affect the simulation results for soil moisture, water cycle, energy balance, and carbon biogeochemical processes. In this study, the soil water movement dynamic sub-model of a hydrologically based land surface model, the variable infiltration capacity (VIC) model, was modified using the finite difference method (FDM) to solve a mixed form of Richards' equation. In addition, the VIC model was coupled with a terrestrial biogeochemical model, the Carnegie Ames Stanford Approach model of carbon, nitrogen, and phosphorus (CASACNP model). The no-flux boundary (NB) and free-drainage boundary (FB) were selected to investigate their impacts on simulations of the water, energy, and soil carbon cycles based on the coupling model. The NB and FB had different influences on the water, energy, and soil carbon simulations. The water and energy simulations were more sensitive, while the soil carbon simulation was less sensitive to FB than to NB. Free-drainage boundary could result in lower soil moisture, evaporation, runoff, and heterotrophic respiration and higher surface soil temperature, sensible heat flux, and soil carbon content. The impact of the lower boundary condition on simulation would be greater with an increase in soil permeability. In the silt loam soil case, evaporation, runoff, and soil respiration of FB were nearly 169, 13%, and 1% smaller, respectively, compared to those of NB.