In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to...In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to 70 d) and undrained triaxial tests on high-quality intact and reconstituted soil specimens were carried out. Shanghai Clay is a lightly overconsolidated soil (OCR=1.2-1.3) with true cohesion or bonding. Due to the influence of soil structures, the secondary compression index Ca varies significantly with consolidation stress and the maximum value of C~ occurs in the vicinity of preconsolidation stress. Measured coefficients of secondary compression generally fall in the range of 0.2%-0.8% based on which Shanghai Clay can be classified as a soil with low to medium secondary compressibility. The effect of soil structures on the compressibility of Shanghai Clay is found to reduce with an increase in depth. Soil structure has an important influence on initial soil stiffness, but does not appear to affect undrained shear strength significantly. Undrained shear strengths of intact Shanghai Clay from compression tests are approximately 20% higher than those from extension tests.展开更多
基金Project(GRF618006) supported by the Research Grants Council of the Hong Kong Special Administrative Region, China
文摘In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to 70 d) and undrained triaxial tests on high-quality intact and reconstituted soil specimens were carried out. Shanghai Clay is a lightly overconsolidated soil (OCR=1.2-1.3) with true cohesion or bonding. Due to the influence of soil structures, the secondary compression index Ca varies significantly with consolidation stress and the maximum value of C~ occurs in the vicinity of preconsolidation stress. Measured coefficients of secondary compression generally fall in the range of 0.2%-0.8% based on which Shanghai Clay can be classified as a soil with low to medium secondary compressibility. The effect of soil structures on the compressibility of Shanghai Clay is found to reduce with an increase in depth. Soil structure has an important influence on initial soil stiffness, but does not appear to affect undrained shear strength significantly. Undrained shear strengths of intact Shanghai Clay from compression tests are approximately 20% higher than those from extension tests.