Investigations were carried out on the micronutrient contents,of major citrus orchard soils (involving seven soil great groups in 8 provinces and an autonomous region of southern China),and an evaluation on the abunda...Investigations were carried out on the micronutrient contents,of major citrus orchard soils (involving seven soil great groups in 8 provinces and an autonomous region of southern China),and an evaluation on the abundance and deficiency of available micronutrients in these soils was made in this paper.In southern China,citrus orchard soils derived from sandstone,sandy shale,Quaternary red clay,diluvial deposit,granite gneiss and neritic deposit were deficient in available Mo and B and low in Zn.Those developed on purple sandy shale,limestone and slope deposit were all in short supply of available Zn,B and Mo.Coastal solonchak was fairly abundant in B,but its available Fe,Zn and Mo contents were rather low.展开更多
Micronutrient status in soils can be affected by long-term fertilization and intensive cropping.A 19-year experiment (1990-2008) was carried out to investigate the influence of different fertilization regimes on micro...Micronutrient status in soils can be affected by long-term fertilization and intensive cropping.A 19-year experiment (1990-2008) was carried out to investigate the influence of different fertilization regimes on micronutrients in an Aquic Inceptisol and maize and wheat grains in Zhengzhou,China.The results showed that soil total Cu and Zn markedly declined after 19 years with application of N fertilizer alone.Soil total Fe and Mn were significantly increased mainly due to atmospheric deposition.Applications of P and organic fertilizer with incorporation of straws resulted in dramatic increases in soil total Cu,Zn,Fe,and Mn.Soil diethylenetriamine pentaacetic acid (DTPA)-extractable Cu in all treatments sharply decreased from initially 1.12 to about 0.8 mg kg -1 .The treatments with organic fertilizer had the highest soil DTPA-extractable Cu,Zn,Fe,and Mn after 19 years of cropping and fertilization,thus demonstrating the important role of organic fertilizer application in improving available micronutrient status.Cu and Zn contents in wheat grains in the no-P treatments were significantly higher than those of the treatments with P application.In addition,Fe and Mn contents in wheat grains were positively correlated with their soil DTPA-extractable concentrations.These indicated that the long-term application of organic fertilizer resulted in significant increases in soil total and available micronutrient concentrations and remarkable reduction in wheat grain Cu and Zn contents,which was due to high soil available P.展开更多
Trace element-contaminated soils(TECSs) are one of the consequences of the past industrial development worldwide. Excessive exposure to trace elements(TEs) represents a permanent threat to ecosystems and humans worldw...Trace element-contaminated soils(TECSs) are one of the consequences of the past industrial development worldwide. Excessive exposure to trace elements(TEs) represents a permanent threat to ecosystems and humans worldwide owing to the capacity of metal(loid)s to cross the cell membranes of living organisms and of human epithelia, and their interference with cell metabolism.Quantification of TE bioavailability in soils is complicated due to the polyphasic and reactive nature of soil constituents. To unravel critical factors controlling soil TE bioavailability and to quantify the ecological toxicity of TECSs, TEs are pivotal for evaluating excessive exposure or deficiencies and controlling the ecological risks. While current knowledge on TE bioavailability and related cumulative consequences is growing, the lack of an integrated use of this concept still hinders its utilization for a more holistic view of ecosystem vulnerability and risks for human health. Bioavailability is not generally included in models for decision making in the appraisal of TECS remediation options. In this review we describe the methods for determining the TE bioavailability and technological developments, gaps in current knowledge, and research needed to better understand how TE bioavailability can be controlled by sustainable TECS management altering key chemical properties, which would allow policy decisions for environmental protection and risk management.展开更多
文摘Investigations were carried out on the micronutrient contents,of major citrus orchard soils (involving seven soil great groups in 8 provinces and an autonomous region of southern China),and an evaluation on the abundance and deficiency of available micronutrients in these soils was made in this paper.In southern China,citrus orchard soils derived from sandstone,sandy shale,Quaternary red clay,diluvial deposit,granite gneiss and neritic deposit were deficient in available Mo and B and low in Zn.Those developed on purple sandy shale,limestone and slope deposit were all in short supply of available Zn,B and Mo.Coastal solonchak was fairly abundant in B,but its available Fe,Zn and Mo contents were rather low.
基金Supported by the National Key Technology R&D Program of China (No. 2006BAD05B04)the Earmarked Fund for Modern Agro-Industry Technology Research System of China
文摘Micronutrient status in soils can be affected by long-term fertilization and intensive cropping.A 19-year experiment (1990-2008) was carried out to investigate the influence of different fertilization regimes on micronutrients in an Aquic Inceptisol and maize and wheat grains in Zhengzhou,China.The results showed that soil total Cu and Zn markedly declined after 19 years with application of N fertilizer alone.Soil total Fe and Mn were significantly increased mainly due to atmospheric deposition.Applications of P and organic fertilizer with incorporation of straws resulted in dramatic increases in soil total Cu,Zn,Fe,and Mn.Soil diethylenetriamine pentaacetic acid (DTPA)-extractable Cu in all treatments sharply decreased from initially 1.12 to about 0.8 mg kg -1 .The treatments with organic fertilizer had the highest soil DTPA-extractable Cu,Zn,Fe,and Mn after 19 years of cropping and fertilization,thus demonstrating the important role of organic fertilizer application in improving available micronutrient status.Cu and Zn contents in wheat grains in the no-P treatments were significantly higher than those of the treatments with P application.In addition,Fe and Mn contents in wheat grains were positively correlated with their soil DTPA-extractable concentrations.These indicated that the long-term application of organic fertilizer resulted in significant increases in soil total and available micronutrient concentrations and remarkable reduction in wheat grain Cu and Zn contents,which was due to high soil available P.
基金financially supported by the European Research Area Network (ERA-NET) Sustainable Management of Soil and Groundwater Under the Pressure of Pollution and Contamination (SNOWMAN) Project Sustainable Management of Trace Element Contaminated Soils (SuMaTECS)
文摘Trace element-contaminated soils(TECSs) are one of the consequences of the past industrial development worldwide. Excessive exposure to trace elements(TEs) represents a permanent threat to ecosystems and humans worldwide owing to the capacity of metal(loid)s to cross the cell membranes of living organisms and of human epithelia, and their interference with cell metabolism.Quantification of TE bioavailability in soils is complicated due to the polyphasic and reactive nature of soil constituents. To unravel critical factors controlling soil TE bioavailability and to quantify the ecological toxicity of TECSs, TEs are pivotal for evaluating excessive exposure or deficiencies and controlling the ecological risks. While current knowledge on TE bioavailability and related cumulative consequences is growing, the lack of an integrated use of this concept still hinders its utilization for a more holistic view of ecosystem vulnerability and risks for human health. Bioavailability is not generally included in models for decision making in the appraisal of TECS remediation options. In this review we describe the methods for determining the TE bioavailability and technological developments, gaps in current knowledge, and research needed to better understand how TE bioavailability can be controlled by sustainable TECS management altering key chemical properties, which would allow policy decisions for environmental protection and risk management.