The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of bo...The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of both regional patterns of soil loss and its impact factors in the plateau area. Based on the regional characteristics of precipitation, vegetation and land form, and with the use of Landsat TM and ground investigation data, the entire Loess Plateau was first divided into 3 380 Fundamental Assessment Units (FAUs) to adapt to this regional modeling and fast assessment. A set of easily available parameters reflecting relevant water erosion factors at a regional scale was then developed, in which dynamic and static factors were discriminated. Arclnfo GIS was used to integrate all essential data into a central database. A resulting mathematical model was established to link the sediment yields and the selected variables on the basis of FAUs through overlay in GIS and multiple regression analyses. The sensitivity analyses and validation results show that this approach works effectively in assessing large area soil erosion, and also helps to understand the regional associations of erosion and its impact factors, and thus might significantly contribute to planning and policymaking for a large area erosion control in the Loess Plateau.展开更多
Sugarcane production is mainly slope cultivation, so soil erosion was serious. The results showed that the different coverage methods have a higher production rate of 39.26%-41.22%, than the control treatment (blank...Sugarcane production is mainly slope cultivation, so soil erosion was serious. The results showed that the different coverage methods have a higher production rate of 39.26%-41.22%, than the control treatment (blank) without covering, so yield-increasing effect was significant. As annual rainfall is around 1,250 mm and the control treatment(blank) without covering, the whole year of fertilizer runoff was 175 mm, the average soil content of runoff water was 2.22 g/L, and the total amount of soil loss was 3585.0 kg/ha. The treatment with farmer fertilization practice + plastic film mulching annual runoff water was 153 mm, the average soil content of runoff water was 2.30 g/L, and the total soil loss of volume was 3183.0 kg/ha. The treatment with optimize fertilization + plastic film mulching annual runoff water was 141mm, the average soil content of runoff water was 2.42 g/L, and the total amount of soil loss was 2958.0 kg/ha. Sugarcane leaves covered treatment runoff did not occur throughout the year. The coverage of treatment compared with the control treatment, runoff water reduction is in the range of 12.6-16.0%, is 15.8-23.8% reduction in the amount of runoff soil. Treatment with no fertilization nutrient N loss was 5.760 kg/ha, and P205 loss was 2.565 kg/ha in runoff water. Farmer fertilization treatments the nutrient N loss was 12.435 kg/ha, and the loss P205 was mulching treatment nutrient N loss was 7.755 kg/ha, and P205 loss was 3.960 kg/ha in water runoff. Optimizing fertilization + plastic 3.540 kg/ha in runoff water.展开更多
Land erosion is an increasing problem that is seriously affecting our country in recent years. In many areas of our country, mountainous and hilly territories suffer major erosion in both surface and depth, where the ...Land erosion is an increasing problem that is seriously affecting our country in recent years. In many areas of our country, mountainous and hilly territories suffer major erosion in both surface and depth, where the solids are deposited in the flat parts of the country, thus leading to a higher content of gravel in agricultural land and filling of the sewage networks. The phenomenon of erosion is greater in the vicinity of residential areas where damages are larger and more sensitive. One of the most vulnerable in our country in terms of soil erosion is the district of Tirana. This study had the main goal to define and categorise of erosion rates in natural environments of the forest economies of the Tirana, the rate of recovery of vegetation, slope and rainfall index, which will serve as information and guidance on the land use by farmers, communes and the state regulatory officials, depending on the ownership of these woodland surfaces.展开更多
Exploring the water yield and soil conservation in the Three-River-Source region is of great significance for evaluating both the ecological stability of the Qinghai-Tibet Plateau,Yellow River basin,Yangtze River basi...Exploring the water yield and soil conservation in the Three-River-Source region is of great significance for evaluating both the ecological stability of the Qinghai-Tibet Plateau,Yellow River basin,Yangtze River basin and Lancang River basin and the sustainable development of human society.The data sources for this study were land use/cover data from four phases(2000,2005,2010 and 2015),daily precipitation and temperature datasets,and the 1:1000000 Chinese soil database.These data were combined with vector data,such as data on settlements,roads,and rivers,along with population,economic raster datasets and CCSM4 common climate model prediction results.The Three-River-Source region was taken as the study area,and four land use/cover development scenarios and two climate change scenarios were designed based on the FLUS model and the downscaling correction method.The InVEST model was used to quantitatively simulate the water yield and soil erosion under different scenarios in the study area in 2030.The results showed the following:(1)Under different land use/cover development scenarios,grassland remained the dominant land use/cover type in the Three-River-Source region,and the area ratio was always greater than 67%.(2)Under the RCP4.5 climate scenario,the annual water yield and soil erosion increased by more than 7%and 3.9%,respectively.Under the RCP8.5 climate scenario,the annual water yield and soil erosion decreased by more than 3.3%and 1.3%,respectively.(3)Climate change played a leading role in the changes in water yield and soil erosion.Climate change contributed as much as 89.97%–98.00%to the change in water yield and 60.49%–95.64%to the change in the soil erosion modulus.However,the contribution of land use/cover changes to the change in regional water yield was only 2.00%–10.03%,and the contribution of the soil erosion modulus change was 4.36%–39.91%.Therefore,the land use development strategy in the Three-River-Source region should comprehensively consider issues such as regional development,the input of returning farmland to forest and grassland,and the resulting ecological benefits.展开更多
基金Under the auspices of Northeast Normal University Sci-tech Innovation Incubation Program(No.NENU-STC08017)European Commission FP7 Project―PRACTICE(No.ENVI-2008-226818)
文摘The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of both regional patterns of soil loss and its impact factors in the plateau area. Based on the regional characteristics of precipitation, vegetation and land form, and with the use of Landsat TM and ground investigation data, the entire Loess Plateau was first divided into 3 380 Fundamental Assessment Units (FAUs) to adapt to this regional modeling and fast assessment. A set of easily available parameters reflecting relevant water erosion factors at a regional scale was then developed, in which dynamic and static factors were discriminated. Arclnfo GIS was used to integrate all essential data into a central database. A resulting mathematical model was established to link the sediment yields and the selected variables on the basis of FAUs through overlay in GIS and multiple regression analyses. The sensitivity analyses and validation results show that this approach works effectively in assessing large area soil erosion, and also helps to understand the regional associations of erosion and its impact factors, and thus might significantly contribute to planning and policymaking for a large area erosion control in the Loess Plateau.
文摘Sugarcane production is mainly slope cultivation, so soil erosion was serious. The results showed that the different coverage methods have a higher production rate of 39.26%-41.22%, than the control treatment (blank) without covering, so yield-increasing effect was significant. As annual rainfall is around 1,250 mm and the control treatment(blank) without covering, the whole year of fertilizer runoff was 175 mm, the average soil content of runoff water was 2.22 g/L, and the total amount of soil loss was 3585.0 kg/ha. The treatment with farmer fertilization practice + plastic film mulching annual runoff water was 153 mm, the average soil content of runoff water was 2.30 g/L, and the total soil loss of volume was 3183.0 kg/ha. The treatment with optimize fertilization + plastic film mulching annual runoff water was 141mm, the average soil content of runoff water was 2.42 g/L, and the total amount of soil loss was 2958.0 kg/ha. Sugarcane leaves covered treatment runoff did not occur throughout the year. The coverage of treatment compared with the control treatment, runoff water reduction is in the range of 12.6-16.0%, is 15.8-23.8% reduction in the amount of runoff soil. Treatment with no fertilization nutrient N loss was 5.760 kg/ha, and P205 loss was 2.565 kg/ha in runoff water. Farmer fertilization treatments the nutrient N loss was 12.435 kg/ha, and the loss P205 was mulching treatment nutrient N loss was 7.755 kg/ha, and P205 loss was 3.960 kg/ha in water runoff. Optimizing fertilization + plastic 3.540 kg/ha in runoff water.
文摘Land erosion is an increasing problem that is seriously affecting our country in recent years. In many areas of our country, mountainous and hilly territories suffer major erosion in both surface and depth, where the solids are deposited in the flat parts of the country, thus leading to a higher content of gravel in agricultural land and filling of the sewage networks. The phenomenon of erosion is greater in the vicinity of residential areas where damages are larger and more sensitive. One of the most vulnerable in our country in terms of soil erosion is the district of Tirana. This study had the main goal to define and categorise of erosion rates in natural environments of the forest economies of the Tirana, the rate of recovery of vegetation, slope and rainfall index, which will serve as information and guidance on the land use by farmers, communes and the state regulatory officials, depending on the ownership of these woodland surfaces.
基金The National Key Research and Development Program of China(2016YFC0503701,2016YFB0501502)The Strategic Priority Research Program of Chinese Academy of Sciences(XDA19040301,XDA20010202,XDA23100201)The Key Project of the High Resolution Earth Observation System in China(00-Y30B14-9001-14/16)
文摘Exploring the water yield and soil conservation in the Three-River-Source region is of great significance for evaluating both the ecological stability of the Qinghai-Tibet Plateau,Yellow River basin,Yangtze River basin and Lancang River basin and the sustainable development of human society.The data sources for this study were land use/cover data from four phases(2000,2005,2010 and 2015),daily precipitation and temperature datasets,and the 1:1000000 Chinese soil database.These data were combined with vector data,such as data on settlements,roads,and rivers,along with population,economic raster datasets and CCSM4 common climate model prediction results.The Three-River-Source region was taken as the study area,and four land use/cover development scenarios and two climate change scenarios were designed based on the FLUS model and the downscaling correction method.The InVEST model was used to quantitatively simulate the water yield and soil erosion under different scenarios in the study area in 2030.The results showed the following:(1)Under different land use/cover development scenarios,grassland remained the dominant land use/cover type in the Three-River-Source region,and the area ratio was always greater than 67%.(2)Under the RCP4.5 climate scenario,the annual water yield and soil erosion increased by more than 7%and 3.9%,respectively.Under the RCP8.5 climate scenario,the annual water yield and soil erosion decreased by more than 3.3%and 1.3%,respectively.(3)Climate change played a leading role in the changes in water yield and soil erosion.Climate change contributed as much as 89.97%–98.00%to the change in water yield and 60.49%–95.64%to the change in the soil erosion modulus.However,the contribution of land use/cover changes to the change in regional water yield was only 2.00%–10.03%,and the contribution of the soil erosion modulus change was 4.36%–39.91%.Therefore,the land use development strategy in the Three-River-Source region should comprehensively consider issues such as regional development,the input of returning farmland to forest and grassland,and the resulting ecological benefits.