期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
土壤冻结时考虑导体传热的 接地装置散流失效模型
1
作者 袁涛 常飞童 +3 位作者 司马文霞 任健行 范荣全 曾文慧 《中国电机工程学报》 EI CSCD 北大核心 2024年第23期9484-9495,I0032,共13页
西藏地区新能源送出走廊不可避免的会途经极寒冻土地区,接地装置面临着冻结失效的风险。以往的研究中,接地装置散流性能计算前提是将冻土考虑成静态水平分层结构,忽略接地装置与杆塔相连时整体的散热效应对土壤冻结结构的影响,导致实际... 西藏地区新能源送出走廊不可避免的会途经极寒冻土地区,接地装置面临着冻结失效的风险。以往的研究中,接地装置散流性能计算前提是将冻土考虑成静态水平分层结构,忽略接地装置与杆塔相连时整体的散热效应对土壤冻结结构的影响,导致实际运行中接地装置散流性能分析不准确。因此,该文首先建立考虑接地导体传热的土壤水热场耦合模型,计算得到杆塔散热条件下土壤的冻结结构;然后,在此冻结结构下构造接地装置冲击散流失效模型;最后,利用该模型与传统模型对比,探究接地导体的半径、长度和土壤初始温度等因素对接地装置散流性能的影响。研究表明,由于接地导体具有良好的导热性能,其所接触的土壤易形成局部冻结,与传统模型相比,-10℃低气温下相同接地装置失效时刻提前约18 d;若低温持续时间相同,半径6 mm的单根垂直接地导体达到3.3 m就不会失效,而传统模型下则是1.6 m,相差约2倍。此外,减小接地导体半径或降低接地导体导热系数均可减缓局部冻结。 展开更多
关键词 土壤冻结过程 冲击接地电阻 局部冻结结构 低温 接地装置失效
下载PDF
Effects of Permafrost Degradation on Soil Hydrological Processes in Alpine Steppe on the Qinghai-Tibet Plateau
2
作者 Yin Zhifang Ouyang Hua Yang Zhaoping 《Chinese Journal of Population,Resources and Environment》 2012年第3期54-61,共8页
Permafrost degradation is prevalent on the Qinghai-Tibet Plateau.This may lead to changes in water and heat transition in soils and thus affect the structure and function of ecosystems.In this paper,using the measured... Permafrost degradation is prevalent on the Qinghai-Tibet Plateau.This may lead to changes in water and heat transition in soils and thus affect the structure and function of ecosystems.In this paper,using the measured data of alpine steppe in Wudaoliang assessed the model performance in simulating soil freezing and thawing processes.Comparison of the simulated results by simultaneous heat and water(SHAW) model to the measured data showed that SHAW model performed satisfactorily.Based on analyzing the simulated and predicted results,two points were obtained:(1) freezing and thawing of the active layer proceeded both from the soil surface downward.Compared with the freezing process,the thawing process was slower.The freezing period persisted in the surface layer(4 cm depth) for about 5 months;(2) in the next 50 years,frozen period would be shorten about 20 days in the top 100 cm depth while the thawing would start earlier 40 days than present.Soil water storage in the 0-60 cm would decrease by 22% averagely,especially from June to August when the vegetation is at the dominating water consumed stage.Therefore,this kind of permafrost degradation as active layer freezing and thawing processes changes will reduce soil water content and thus influence those ecosystems above it. 展开更多
关键词 Qinghai-Tibet Plateau permafrost degradation SHAW model soil water content
下载PDF
Reconstruction of Soil Particle Composition During Freeze-Thaw Cycling: A Review 被引量:40
3
作者 ZHANG Ze MA Wei +2 位作者 FENG Wenjie XIAO Donghui HOU Xin 《Pedosphere》 SCIE CAS CSCD 2016年第2期167-179,共13页
Studies conducted over several decades have shown that the freeze-thaw cycles are a process of energy input and output in soil, which help drive the formation of soil structure, through water expansion by crystallizat... Studies conducted over several decades have shown that the freeze-thaw cycles are a process of energy input and output in soil, which help drive the formation of soil structure, through water expansion by crystallization and the movement of water and salts by thermal gradients. However, most of these studies are published in Russian or Chinese and are less accessible to international researchers. This review brought together a wide range of studies on the effects of freezing and thawing on soil structure. The following findings are summarized: i) soil structure after freeze-thaw cycles changes considerably and the changes are due to the mechanical fragmentation of soil coarse mineral particles and the aggregation of soil fine particles; ii) the particle size of soil becomes homogeneous and the variation in soil structure weakens as the number of freeze-thaw cycles increases; iii) in the freezing process of soil, an important principle in the variation of soil particle bonding is presented as: condensation →aggregation→ crystallization; iv) the freeze-thaw cycling process has a strong effect on soil structure by changing the granulometric composition of mineral particles and structures within the soil. The freeze-thaw cycling process strengthens particle bonding, which causes an overall increase in aggregate stability of soil, showing a process from destruction to reconstruction. 展开更多
关键词 aggregate stability AGGREGATION FRAGMENTATION mineral particle soil granulometric composition soil structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部