期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Vis-NIR光谱快速估测土壤可侵蚀性因子可行性分析 被引量:6
1
作者 喻武 贾晓琳 +2 位作者 陈颂超 周炼清 史舟 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第4期1076-1081,共6页
土壤侵蚀降低土地生产力,导致土壤环境恶化,其中水力侵蚀是土壤侵蚀中最主要的一种形式。土壤可侵蚀性K值是评价土壤被降雨侵蚀难易程度的一项重要指标。使用河南、福建和浙江三省研磨干样可见-近红外(Vis-NIR)漫反射光谱数据,将其转换... 土壤侵蚀降低土地生产力,导致土壤环境恶化,其中水力侵蚀是土壤侵蚀中最主要的一种形式。土壤可侵蚀性K值是评价土壤被降雨侵蚀难易程度的一项重要指标。使用河南、福建和浙江三省研磨干样可见-近红外(Vis-NIR)漫反射光谱数据,将其转换为吸收率后进行Savitzky-Golay(SG)平滑去噪;对土壤有机质(SOM)和机械组成进行精准预测后,分别采用EPIC和RUSLE2模型估算K值,并对预测精度进行比较分析,所得结论如下:(1)建立土壤有机质和机械组成高光谱最佳预测模型,土壤质地(砂粒、粉粒和黏粒)预测采用支持向量机(SVM)模型,SOM预测采用局部加权回归(LWR)模型,模型四分位相对预测误差(RPIQ)为2.27,3.17,2.18和3.44;(2)通过土壤质地估算的土壤渗透性等级分类效果较好,Kappa系数为0.62,同时估测的土壤质地类型与实测土壤质地类型分布特征相近,质地主要类型均是粉黏土、砂黏壤土、壤土、壤砂土和砂壤土;(3)EPIC和RUSLE2两种模型均具有较为精确的估测能力,EPIC模型预测精度更高,均方根误差(RMSEP)为0.006 6(t·ha·h)/(ha·MJ·mm),RPIQ达1.58,而RUSLE2模型精度相对较低(其中RPIQ为1.43),因此推荐使用EPIC模型结合Vis-NIR光谱技术估测土壤可侵蚀性K值。本研究为今后快速准确预测K值提供思路,并为大面积监测土壤侵蚀提供辅助手段。 展开更多
关键词 土壤可侵蚀性k值 EPIC RUSLE2
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部