Promoting soil carbon sequestration in agricultural land is one of the viable strategies to decelerate the observed climate changes. However, soil physical disturbances have aggravated the soil degradation process by ...Promoting soil carbon sequestration in agricultural land is one of the viable strategies to decelerate the observed climate changes. However, soil physical disturbances have aggravated the soil degradation process by accelerating erosion. Thus, reducing the magnitude and intensity of soil physical disturbance through appropriate farming/agricultural systems is essential to management of soil carbon sink capacity of agricultural lands. Four sites of different land use types/tillage practices, i) no-till (NT) corn (Zea mays L.) (NTC), ii) conventional till (CT) corn (CTC), iii) pastureland (PL), and iv) native forest (NF), were selected at the North Appalachian Experimental Watershed Station, Ohio, USA to assess the impact of NT farming on soil aggregate indices including water-stable aggregation, mean weight diameter (MWD) and geometric mean diameter (GMD), and soil organic carbon and total nitrogen contents. The NTC plots received cow manure additions (about 15 t ha-1) every other year. The CTC plots involved disking and chisel ploughing and liquid fertilizer application (110 L ha-l). The results showed that both water-stable aggregation and MWD were greater in soil for NTC than for CTC. In the 0-10 cm soil layer, the 〉 4.75-mm size fraction dominated NTC and was 46% more than that for CTC, whereas the 〈 0.25-mm size fraction was 380% more for CTC than for NTC. The values of both MWD and GMD in soil for NTC (2.17 mm and 1.19 mm, respectively) were higher than those for CTC (1.47 and 0.72 mm, respectively) in the 0-10 cm soil layer. Macroaggregates contained 6%-42% and 13%-43% higher organic carbon and total nitrogen contents, respectively, than microaggregates in soil for all sites. Macroaggregates in soil for NTC contained 40% more organic carbon and total nitrogen over microaggregates in soil for CTC. Therefore, a higher proportion of microaggregates with lower organic carbon contents created a carbon-depleted environment for CTC. In contrast, soil for NTC had more aggregation and contained higher organic carbon content within water-stable aggregates. The soil organic carbon and total nitrogen stocks (Mg ha-1) among the different sites followed the trend of NF 〉 PL 〉 NTC 〉 CTC, being 35%-46% more for NTC over CTC. The NT practice enhanced soil organic carbon content over the CT practice and thus was an important strategy of carbon sequestration in cropland soils.展开更多
Biologically active soil organic carbon (BASOC) is an important fraction of soil organic carbon (SOC), but our understanding of the correlation between BASOC and soil aggregate stability is limited. At an ecologic...Biologically active soil organic carbon (BASOC) is an important fraction of soil organic carbon (SOC), but our understanding of the correlation between BASOC and soil aggregate stability is limited. At an ecological experimental station (28° 04'-28° 37' N, 116° 41'-117° 09' E) in Yujiang County, Jiangxi Province, China, we analyzed the dynamic relationship between soil aggregate stability and BASOC content over time in the red soil (Udic Ferrosols) fertilized with a nitrogen-phosphorus-potassium chemical fertilizer (NPK) without manure or with NPK plus livestock manure or green manure. The dynamics of BASOC was evaluated using CO2 efflux, and soil aggregates were separated according to size using a wet-sieving technique. The soils fertilized with NPK plus livestock manure had a significantly higher content of BASOC and an improved aggregate stability compared to the soils fertilized with NPK plus green manure or NPK alone. The BASOC contents in all fertilized soils decreased over time. The contents of large aggregates (800-2 000 μm) dramatically decreased over the first 7 d of incubation, but the contents of small aggregates (〈 800 μm) either remained the same or increased, depending on the incubation time and specific aggregate sizes. The aggregate stability did not differ significantly at the beginning and end of incubation, but the lowest stability in all fertilized soils occurred in the middle of the incubation, which implied that the soils had a strong resilience for aggregate stability. The change in BASOC content was only correlated with aggregate stability during the first 27 d of incubation.展开更多
In rain-fed semi-arid agroecosystems, continuous conventional tillage can cause serious problems in soil quality and crop production, whereas rotational tillage (no-tillage and subsoiling) could decrease soil bulk d...In rain-fed semi-arid agroecosystems, continuous conventional tillage can cause serious problems in soil quality and crop production, whereas rotational tillage (no-tillage and subsoiling) could decrease soil bulk density, and increase soil aggregates and organic carbon in the 0-40 cm soil layer. A 3-year field study was conducted to determine the effect of tillage practices on soil organic carbon (SOC), total nitrogen (TN), water-stable aggregate size distribution and aggregate C and N sequestration from 0 to 40 cm soil in semi-arid areas of southern Ningxia. Three tillage treatments were tested: no-tillage in year 1, subsoiling in year 2, and no-tillage in year 3 (NT-ST-NT); subsoiling in year 1, no-tillage in year 2, and subsoiling in year 3 (ST-NT-ST); and conventional tillage over years 1-3 (CT). Mean values of soil bulk density in 0-40 cm under NT-ST-NT and ST-NT-ST were significantly decreased by 3.3% and 6.5%, respectively, compared with CT, while soil total porosity was greatly improved. Rotational tillage increased SOC, TN, and water-stable aggregates in the 0-40 cm soil, with the greatest effect under ST-NT-ST. In 0-20 and 2(}-40 cm soils, the tillage effect was confined to the 2-0.25 mm size fraction of soil aggregates, and rotational tillage treatments obtained significantly higher SOC and TN contents than conventional tillage. No significant differences were detected in SOC and TN contents in the 〉 2 mm and 〈 0.25 mm aggregates among all treatments. In conclusion, rotational tillage practices could significantly increase SOC and TN levels, due to a fundamental change in soil structure, and maintain agroecosystem sustainability in the Loess Plateau area of China.展开更多
The size distribution of water-stable aggregates and the variability of organic C,N and P contents over aggregate size fractions were studied for orchard,upland,paddy,and grassland soils with high,medium,and low ferti...The size distribution of water-stable aggregates and the variability of organic C,N and P contents over aggregate size fractions were studied for orchard,upland,paddy,and grassland soils with high,medium,and low fertility levels.The results showed that > 5 mm aggregates in the cultivated upland and paddy soils were 44.0% and 32.0%,respectively,less than those in the un-tilled orchard soil.Organic C and soil N in different size aggregate fractions in orchard soil with high fertility were significantly higher than those of other land uses.However,the contents of soil P in different size aggregates were significantly greater in the paddy soil as compared to the other land uses.Soil organic C,N and P contents were higher in larger aggregates than those in smaller ones.The amount of water-stable aggregates was positively correlated to their contribution to soil organic C,N and P.For orchard and grassland soils,the > 5 mm aggregates made the greatest contribution to soil nutrients,while for upland soil,the 0.25-0.053 mm aggregates contributed the most to soil nutrients.Therefore,the land use with minimum disturbance was beneficial for the formation of a better soil structure.The dominant soil aggregates in different land use types determined the distribution of soil nutrients.Utilization efficiency of soil P could be improved by converting other land uses to the paddy soil.展开更多
基金the research fellowship granted by the Department of Biotechnology,Government of India,in the form of Overseas Associateship(No. BT/20/NE/2011/2014)
文摘Promoting soil carbon sequestration in agricultural land is one of the viable strategies to decelerate the observed climate changes. However, soil physical disturbances have aggravated the soil degradation process by accelerating erosion. Thus, reducing the magnitude and intensity of soil physical disturbance through appropriate farming/agricultural systems is essential to management of soil carbon sink capacity of agricultural lands. Four sites of different land use types/tillage practices, i) no-till (NT) corn (Zea mays L.) (NTC), ii) conventional till (CT) corn (CTC), iii) pastureland (PL), and iv) native forest (NF), were selected at the North Appalachian Experimental Watershed Station, Ohio, USA to assess the impact of NT farming on soil aggregate indices including water-stable aggregation, mean weight diameter (MWD) and geometric mean diameter (GMD), and soil organic carbon and total nitrogen contents. The NTC plots received cow manure additions (about 15 t ha-1) every other year. The CTC plots involved disking and chisel ploughing and liquid fertilizer application (110 L ha-l). The results showed that both water-stable aggregation and MWD were greater in soil for NTC than for CTC. In the 0-10 cm soil layer, the 〉 4.75-mm size fraction dominated NTC and was 46% more than that for CTC, whereas the 〈 0.25-mm size fraction was 380% more for CTC than for NTC. The values of both MWD and GMD in soil for NTC (2.17 mm and 1.19 mm, respectively) were higher than those for CTC (1.47 and 0.72 mm, respectively) in the 0-10 cm soil layer. Macroaggregates contained 6%-42% and 13%-43% higher organic carbon and total nitrogen contents, respectively, than microaggregates in soil for all sites. Macroaggregates in soil for NTC contained 40% more organic carbon and total nitrogen over microaggregates in soil for CTC. Therefore, a higher proportion of microaggregates with lower organic carbon contents created a carbon-depleted environment for CTC. In contrast, soil for NTC had more aggregation and contained higher organic carbon content within water-stable aggregates. The soil organic carbon and total nitrogen stocks (Mg ha-1) among the different sites followed the trend of NF 〉 PL 〉 NTC 〉 CTC, being 35%-46% more for NTC over CTC. The NT practice enhanced soil organic carbon content over the CT practice and thus was an important strategy of carbon sequestration in cropland soils.
基金Supported by the National Natural Science Foundation of China (No.30971869)the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX2-YW-438-1)
文摘Biologically active soil organic carbon (BASOC) is an important fraction of soil organic carbon (SOC), but our understanding of the correlation between BASOC and soil aggregate stability is limited. At an ecological experimental station (28° 04'-28° 37' N, 116° 41'-117° 09' E) in Yujiang County, Jiangxi Province, China, we analyzed the dynamic relationship between soil aggregate stability and BASOC content over time in the red soil (Udic Ferrosols) fertilized with a nitrogen-phosphorus-potassium chemical fertilizer (NPK) without manure or with NPK plus livestock manure or green manure. The dynamics of BASOC was evaluated using CO2 efflux, and soil aggregates were separated according to size using a wet-sieving technique. The soils fertilized with NPK plus livestock manure had a significantly higher content of BASOC and an improved aggregate stability compared to the soils fertilized with NPK plus green manure or NPK alone. The BASOC contents in all fertilized soils decreased over time. The contents of large aggregates (800-2 000 μm) dramatically decreased over the first 7 d of incubation, but the contents of small aggregates (〈 800 μm) either remained the same or increased, depending on the incubation time and specific aggregate sizes. The aggregate stability did not differ significantly at the beginning and end of incubation, but the lowest stability in all fertilized soils occurred in the middle of the incubation, which implied that the soils had a strong resilience for aggregate stability. The change in BASOC content was only correlated with aggregate stability during the first 27 d of incubation.
基金Supported by the National Key Technologies Research and Development Program of the Ministry of Science and Technology of China during the 12th Five-Year Plan Period (No. 2012BAD09B03)the 111 Project of China (No. B12007)
文摘In rain-fed semi-arid agroecosystems, continuous conventional tillage can cause serious problems in soil quality and crop production, whereas rotational tillage (no-tillage and subsoiling) could decrease soil bulk density, and increase soil aggregates and organic carbon in the 0-40 cm soil layer. A 3-year field study was conducted to determine the effect of tillage practices on soil organic carbon (SOC), total nitrogen (TN), water-stable aggregate size distribution and aggregate C and N sequestration from 0 to 40 cm soil in semi-arid areas of southern Ningxia. Three tillage treatments were tested: no-tillage in year 1, subsoiling in year 2, and no-tillage in year 3 (NT-ST-NT); subsoiling in year 1, no-tillage in year 2, and subsoiling in year 3 (ST-NT-ST); and conventional tillage over years 1-3 (CT). Mean values of soil bulk density in 0-40 cm under NT-ST-NT and ST-NT-ST were significantly decreased by 3.3% and 6.5%, respectively, compared with CT, while soil total porosity was greatly improved. Rotational tillage increased SOC, TN, and water-stable aggregates in the 0-40 cm soil, with the greatest effect under ST-NT-ST. In 0-20 and 2(}-40 cm soils, the tillage effect was confined to the 2-0.25 mm size fraction of soil aggregates, and rotational tillage treatments obtained significantly higher SOC and TN contents than conventional tillage. No significant differences were detected in SOC and TN contents in the 〉 2 mm and 〈 0.25 mm aggregates among all treatments. In conclusion, rotational tillage practices could significantly increase SOC and TN levels, due to a fundamental change in soil structure, and maintain agroecosystem sustainability in the Loess Plateau area of China.
基金Supported by the National Natural Science Foundation of China(No.30971869)
文摘The size distribution of water-stable aggregates and the variability of organic C,N and P contents over aggregate size fractions were studied for orchard,upland,paddy,and grassland soils with high,medium,and low fertility levels.The results showed that > 5 mm aggregates in the cultivated upland and paddy soils were 44.0% and 32.0%,respectively,less than those in the un-tilled orchard soil.Organic C and soil N in different size aggregate fractions in orchard soil with high fertility were significantly higher than those of other land uses.However,the contents of soil P in different size aggregates were significantly greater in the paddy soil as compared to the other land uses.Soil organic C,N and P contents were higher in larger aggregates than those in smaller ones.The amount of water-stable aggregates was positively correlated to their contribution to soil organic C,N and P.For orchard and grassland soils,the > 5 mm aggregates made the greatest contribution to soil nutrients,while for upland soil,the 0.25-0.053 mm aggregates contributed the most to soil nutrients.Therefore,the land use with minimum disturbance was beneficial for the formation of a better soil structure.The dominant soil aggregates in different land use types determined the distribution of soil nutrients.Utilization efficiency of soil P could be improved by converting other land uses to the paddy soil.