Influenced by climate, biology and soil properties, vertical soil profile showed stratification character in terms of basic physical properties. The research conducted measurement and analysis on basic physical proper...Influenced by climate, biology and soil properties, vertical soil profile showed stratification character in terms of basic physical properties. The research conducted measurement and analysis on basic physical properties of typical field in the Daxia irrigation area in Qinghai Province. The results showed that soil bulk density changed from decreasing to increasing upon soil horizon; the soil horizons in 0-40 and 90-150 cm were high porosity zones, and the others were low porosi- ty area; the saturation moisture capacity, water retention of capillary porosity and field water retention all changed from decreasing to increasing upon soil horizon featured by arithmetic progression. In addition, the research area in Daxia irrigated area showed loose structure in soil horizon of 0-40 cm, compacted in 40-60 cm, and loose again in 60-200 cm vertically.展开更多
To date, the Xunyang mercury(Hg) mining district is the only ongoing large-scale Hg mining district in China. To understand the influence of Hg contamination mode from the Hg mining and smelting activities, 27 samplin...To date, the Xunyang mercury(Hg) mining district is the only ongoing large-scale Hg mining district in China. To understand the influence of Hg contamination mode from the Hg mining and smelting activities, 27 sampling sites in the Xunyang Hg mining district were chosen in this study. Total gaseous mercury(TGM) in ambient air was measured using a Lumex-RA915 automatic Hg analyzer in2011. Rice samples and soil samples from rhizosphere were collected systematically and simultaneously. Total Hg(THg) and methylmercury(Me Hg) concentrations in rice grain and soil samples and Hg speciation with modified sequential selective extractions were measured. The local environment was seriously polluted with Hg. The TGM(302 ± 376 ng·m-3, ranging from 24 to 2220 ng·m^(-3)) in the local ambient air, THg(28 ± 30 mg·kg^(-1), ranging from 0.31 to 121 mg·kg^(-1)) and Me Hg(2.3 ± 1.9 lg·kg^(-1),ranging from 0.24 to 8.9 lg·kg^(-1)) in soil samples were at the sample level with Hg contaminated area. The THg concentration(26 ± 16 lg·kg^(-1)ranging from 4.5 to 71 lg·kg^(-1)) in most of the rice grain samples clearly exceeds the threshold level(20 lg·kg^(-1)) in the Chinese national guidelines for cereals(NY 861-2004). The inorganic mercury(IHg)(9.1 ± 5.6 lg·kg^(-1), ranging from 1.2 to 24 lg·kg^(-1)) and Me Hg(14 ± 9.8 lg·kg^(-1), ranging from 2.1 to 59 lg·kg^(-1))concentration in rice grain samples were at the same level with Hg contaminated area. The main species of Hg in paddy soils reveal strong complex Hg and residue Hg. According to the correlation analysis, a Hg pollution mode from local Hg mining and smelting was hypothesized, including Hg emission, transportation, methylation, and uptake process.展开更多
Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-syst...Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water ex- changes between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thaw- ing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeoer and permafrost degradation.展开更多
Forty-five acid sulfatc topsoil samples (depth < 0.5 m) from 15 soil coreswere collected from 11 locations along the New South Wales coast, Australia. There was an overalltrend for the concentration of the HCl-extr...Forty-five acid sulfatc topsoil samples (depth < 0.5 m) from 15 soil coreswere collected from 11 locations along the New South Wales coast, Australia. There was an overalltrend for the concentration of the HCl-extractable P to increase along with increasing amounts oforganic C and the HCl-extractable trivalent metals in the topsoils of some less-disturbed acidsulfate soils (pH < 4.5). This suggests that inorganic P in these soils probably accumulated viabiological cycling and was retained by complexation with trivalent metals or their oxides andhydroxides. While there was no clear correlation between pH and the water-extractable P, theconcentration of the water-extractable P tended to increase with increasing amounts of theHCl-extractable P. This disagrees with some established models which suggest that the concentrationof solution P in acid soils is independent of total P and decreases with increasing acidity. Thehigh concentration of sulfate present in acid sulfate soils appeared to affect the chemical behaviorof P in these soil systems. Comparison was made between a less disturbed wetland acid sulfate soiland a more intensively disturbed sugarcane acid sulfate soil. The results show that reclamation ofwetland acid sulfate soils for sugarcane production caused a significant decrease in theHCl-extractable P in the topsoil layer as a result of the reduced bio-cycling of phosphorusfollowing sugarcane farming. Simulation experiment shows that addition of hydrated lime had noeffects on the immobilization of retained P in an acid sulfate soil sample within a pH range3.5~4.6. When the pH was raised to above 4.6, soluble P in the soil extracts had a tendency toincrease with increasing pH until the 15th extraction (pH 5.13). This, in combination with the poorpH-soluble P relationship observed from the less-disturbed acid sulfate soils, suggests that solubleP was not clearly pH-dependent in acid sulfate soils with pH < 4.5.展开更多
The effect of soil erosion on spring barley growth was studied on a deep loamy soil in East Anglia,England, in 1992. Soil erosion was simulated by three levels of soil desurfacing, 7.5, 18 and 30cm with threereplicate...The effect of soil erosion on spring barley growth was studied on a deep loamy soil in East Anglia,England, in 1992. Soil erosion was simulated by three levels of soil desurfacing, 7.5, 18 and 30cm with threereplicates. Significant differences in crop height, ground cover and crop yield were observed between the threelevels of desurfacing. Soil desurfacing also has a significant effect on soil moisture at the 20cm depth. Theinteraction between soil removal and crop performance affected soil moisture at the depths of 50 and 100cm.No significant differences were found in runoff and sediment between the three topsoil removals due to verydry growing season. Regression equations were developed between spring barley yield and soil desurfacing.Spring barley grain yield declined by 97.6kg/ha per cm soil desurfacing.展开更多
The Red Soil Hilly Region in South China, where there is a high capacity of carbon(C), and the land use and vegetation cover change greatly, is an important ecological area in the world, and has an important impact on...The Red Soil Hilly Region in South China, where there is a high capacity of carbon(C), and the land use and vegetation cover change greatly, is an important ecological area in the world, and has an important impact on the global carbon cycle and the seasonal fluctuation of atmospheric CO_2. To better evaluate the effects of reclamation systems in orchards converted from grasslands on soil carbon sequestration, we investigated soil organic carbon(SOC) content and stable C isotope(δ^(13)C)composition in three nectarine orchards at Yuchi Experimental Station in South China. Compared with the sloping clean tillage orchard and terraced clean tillage orchard, SOC content in the terraced orchard with grass cover was increased by 14.90% to 38.49%, and 7.40% to 15.33%, respectively. During the 14 years after orchard establishment, the soil organic matter sources influenced both δ^(13)C distribution with depth and carbon replacement. SOC turnover of the upper soil layer in the terraced orchard with grass cover(a mean 63.05% of replacement in the 20 cm after 14 years) was 1.59 and 1.41 times larger than that of the sloping clean tillage orchard and terraced clean tillage orchard under subtropical conditions, respectively. The equilibrium value of soil organic carbon in the three treatments ranged from 16.067 to 25.608 g/kg under the experimental conditions. The equilibrium value of soil organic carbon in the surface layer under grass cover was 54.801 t/hm^2, and the carbon sequestration potential was 24.695 1 t/hm^2.展开更多
A pot experiment was performed to determine the effects of arbuscular mycorrhizM fungi (AMF) communities on soil properties and the growth of cucumber seedlings in a degraded soil that had been used for continuous c...A pot experiment was performed to determine the effects of arbuscular mycorrhizM fungi (AMF) communities on soil properties and the growth of cucumber seedlings in a degraded soil that had been used for continuous cucumber monoculture in a greenhouse for 15 years. In the experiment, AMF communities (created by combining various AMF species that were found to be dominant in natural farm soil) were inoculated into the degraded soil, and then the soil was planted with cucumber. Inoculation with AMF communities did not affect soil pH but increased soil aggregate stability and decreased the concentrations of salt ions and electrical conductivity (EC) in the soil. Inoculation with AMF communities increased the numbers of culturable bacteria and actinomycetes but reduced the number of fungi. AMF communities increased plant growth, soluble sugar content, chlorophyll content, and root activity compared to non-mycorrhizal or a single AMF species treatments. Improvements of soil quality and plant growth were greatest with the following two communities: Glomus etunicatum + G. mosseae + Gigaspora margarita + Acaulospora lacunosa and G. aggregatum + G. etunicatum + G. mosseae + G. versiforme + G. margarita + A. lacunosa. The results suggested that certain AMF communities could substantially improve the quality of degraded soil.展开更多
Soil moisture droughts can trigger abnormal changes of material and energy cycles in the soil-vegetation-atmosphere system,leading to important effects on local ecosystem,weather,and climate.Drought detection and unde...Soil moisture droughts can trigger abnormal changes of material and energy cycles in the soil-vegetation-atmosphere system,leading to important effects on local ecosystem,weather,and climate.Drought detection and understanding benefit disaster alleviation,as well as weather and climate predictions based on the understanding the land-atmosphere interactions.We thus simulated soil moisture using land surface model CLM3.5 driven with observed climate in China,and corrected wet bias in soil moisture simulations via introducing soil porosity parameter into soil water parameterization scheme.Then we defined soil moisture drought to quantify spatiotemporal variability of droughts.Over the period from 1951 to 2008,40%of months(to the sum of 12×58)underwent droughts,with the average area of 54.6%of total land area of China's Mainland.The annual monthly drought numbers presented a significant decrease in arid regions,but a significant increase in semi-arid and semi-humid regions,a decrease in humid regions but not significant.The Mainland as a whole experienced an increasing drought trend,with77.3%of areal ratio of decrease to increase.The monthly droughts in winter were the strongest but the weakest in summer,impacting 54.3%and 8.4%total area of the Mainland,respectively.The drought lasting three months or more occurred mainly in the semi-arid and semi-humid regions,with probability>51.7%,even>77.6%,whereas those lasting 6 and 12 months or more impacted mainly across arid and semi-arid regions.展开更多
In this study, the variations in surface soil liquid water(SSLW) due to future climate change are explored in the‘Huang-Huai-Hai Plain'(‘3H') region in China with the Common Land Model(CoLM). To evaluate the...In this study, the variations in surface soil liquid water(SSLW) due to future climate change are explored in the‘Huang-Huai-Hai Plain'(‘3H') region in China with the Common Land Model(CoLM). To evaluate the possible maximum response of SSLW to climate change, the combination of the conditional nonlinear optimal perturbation related to the parameter(CNOP-P) approach and projections from 10 general circulation models(GCMs) of the Coupled Model Intercomparison Project5(CMIP5) are used. The CNOP-P-type temperature change scenario, a new type of temperature change scenario, is determined by using the CNOP-P method and constrained by the temperature change projections from the 10 GCMs under a high-emission scenario(the Representative Concentration Pathway 8.5 scenario). Numerical results have shown that the response of SSLW to the CNOP-P-type temperature scenario is stronger than those to the 11 temperature scenarios derived from the 10 GCMs and from their ensemble average in the entire ‘3H' region. In the northern region, SSLW under the CNOP-P-type scenario increases to0.1773 m^3 m^(-3); however, SSLW in the scenarios from the GCMs fluctuates from 0.1671 to 0.1748 m^3 m^(-3). In the southern region,SSLW decreases, and its variation(–0.0070 m^3 m^(-3)) due to the CNOP-P-type scenario is higher than each of the variations(–0.0051 to –0.0026 m^3 m^(-3)) due to the scenarios from the GCMs.展开更多
基金Supported by Water Consumption Coefficient in the Yellow River Basin in Qinghai Province(QX2012-019)~~
文摘Influenced by climate, biology and soil properties, vertical soil profile showed stratification character in terms of basic physical properties. The research conducted measurement and analysis on basic physical properties of typical field in the Daxia irrigation area in Qinghai Province. The results showed that soil bulk density changed from decreasing to increasing upon soil horizon; the soil horizons in 0-40 and 90-150 cm were high porosity zones, and the others were low porosi- ty area; the saturation moisture capacity, water retention of capillary porosity and field water retention all changed from decreasing to increasing upon soil horizon featured by arithmetic progression. In addition, the research area in Daxia irrigated area showed loose structure in soil horizon of 0-40 cm, compacted in 40-60 cm, and loose again in 60-200 cm vertically.
基金financially supported by National Key Basic Research Program of China (973 Program,No.2013CB430004)the National Natural Science Foundation of China (No.41273152+1 种基金41473123)CAS Youth Innovation Promotion Association,Chinese Academy of Sciences (No.2011280)
文摘To date, the Xunyang mercury(Hg) mining district is the only ongoing large-scale Hg mining district in China. To understand the influence of Hg contamination mode from the Hg mining and smelting activities, 27 sampling sites in the Xunyang Hg mining district were chosen in this study. Total gaseous mercury(TGM) in ambient air was measured using a Lumex-RA915 automatic Hg analyzer in2011. Rice samples and soil samples from rhizosphere were collected systematically and simultaneously. Total Hg(THg) and methylmercury(Me Hg) concentrations in rice grain and soil samples and Hg speciation with modified sequential selective extractions were measured. The local environment was seriously polluted with Hg. The TGM(302 ± 376 ng·m-3, ranging from 24 to 2220 ng·m^(-3)) in the local ambient air, THg(28 ± 30 mg·kg^(-1), ranging from 0.31 to 121 mg·kg^(-1)) and Me Hg(2.3 ± 1.9 lg·kg^(-1),ranging from 0.24 to 8.9 lg·kg^(-1)) in soil samples were at the sample level with Hg contaminated area. The THg concentration(26 ± 16 lg·kg^(-1)ranging from 4.5 to 71 lg·kg^(-1)) in most of the rice grain samples clearly exceeds the threshold level(20 lg·kg^(-1)) in the Chinese national guidelines for cereals(NY 861-2004). The inorganic mercury(IHg)(9.1 ± 5.6 lg·kg^(-1), ranging from 1.2 to 24 lg·kg^(-1)) and Me Hg(14 ± 9.8 lg·kg^(-1), ranging from 2.1 to 59 lg·kg^(-1))concentration in rice grain samples were at the same level with Hg contaminated area. The main species of Hg in paddy soils reveal strong complex Hg and residue Hg. According to the correlation analysis, a Hg pollution mode from local Hg mining and smelting was hypothesized, including Hg emission, transportation, methylation, and uptake process.
基金National Major Scientific Project of China(No.2013CBA01803)Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.41121001)+1 种基金National Natural Science Foundation of China(No.41271081)Foundation of One Hundred Person Project of Chinese Academy of Sciences(No.51Y251571)
文摘Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water ex- changes between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thaw- ing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeoer and permafrost degradation.
文摘Forty-five acid sulfatc topsoil samples (depth < 0.5 m) from 15 soil coreswere collected from 11 locations along the New South Wales coast, Australia. There was an overalltrend for the concentration of the HCl-extractable P to increase along with increasing amounts oforganic C and the HCl-extractable trivalent metals in the topsoils of some less-disturbed acidsulfate soils (pH < 4.5). This suggests that inorganic P in these soils probably accumulated viabiological cycling and was retained by complexation with trivalent metals or their oxides andhydroxides. While there was no clear correlation between pH and the water-extractable P, theconcentration of the water-extractable P tended to increase with increasing amounts of theHCl-extractable P. This disagrees with some established models which suggest that the concentrationof solution P in acid soils is independent of total P and decreases with increasing acidity. Thehigh concentration of sulfate present in acid sulfate soils appeared to affect the chemical behaviorof P in these soil systems. Comparison was made between a less disturbed wetland acid sulfate soiland a more intensively disturbed sugarcane acid sulfate soil. The results show that reclamation ofwetland acid sulfate soils for sugarcane production caused a significant decrease in theHCl-extractable P in the topsoil layer as a result of the reduced bio-cycling of phosphorusfollowing sugarcane farming. Simulation experiment shows that addition of hydrated lime had noeffects on the immobilization of retained P in an acid sulfate soil sample within a pH range3.5~4.6. When the pH was raised to above 4.6, soluble P in the soil extracts had a tendency toincrease with increasing pH until the 15th extraction (pH 5.13). This, in combination with the poorpH-soluble P relationship observed from the less-disturbed acid sulfate soils, suggests that solubleP was not clearly pH-dependent in acid sulfate soils with pH < 4.5.
文摘The effect of soil erosion on spring barley growth was studied on a deep loamy soil in East Anglia,England, in 1992. Soil erosion was simulated by three levels of soil desurfacing, 7.5, 18 and 30cm with threereplicates. Significant differences in crop height, ground cover and crop yield were observed between the threelevels of desurfacing. Soil desurfacing also has a significant effect on soil moisture at the 20cm depth. Theinteraction between soil removal and crop performance affected soil moisture at the depths of 50 and 100cm.No significant differences were found in runoff and sediment between the three topsoil removals due to verydry growing season. Regression equations were developed between spring barley yield and soil desurfacing.Spring barley grain yield declined by 97.6kg/ha per cm soil desurfacing.
基金Supported by Science and Technology Program of Fujian Province(2017R1016-4)Natural Science Foundation of Fujian Province(2017J01072)
文摘The Red Soil Hilly Region in South China, where there is a high capacity of carbon(C), and the land use and vegetation cover change greatly, is an important ecological area in the world, and has an important impact on the global carbon cycle and the seasonal fluctuation of atmospheric CO_2. To better evaluate the effects of reclamation systems in orchards converted from grasslands on soil carbon sequestration, we investigated soil organic carbon(SOC) content and stable C isotope(δ^(13)C)composition in three nectarine orchards at Yuchi Experimental Station in South China. Compared with the sloping clean tillage orchard and terraced clean tillage orchard, SOC content in the terraced orchard with grass cover was increased by 14.90% to 38.49%, and 7.40% to 15.33%, respectively. During the 14 years after orchard establishment, the soil organic matter sources influenced both δ^(13)C distribution with depth and carbon replacement. SOC turnover of the upper soil layer in the terraced orchard with grass cover(a mean 63.05% of replacement in the 20 cm after 14 years) was 1.59 and 1.41 times larger than that of the sloping clean tillage orchard and terraced clean tillage orchard under subtropical conditions, respectively. The equilibrium value of soil organic carbon in the three treatments ranged from 16.067 to 25.608 g/kg under the experimental conditions. The equilibrium value of soil organic carbon in the surface layer under grass cover was 54.801 t/hm^2, and the carbon sequestration potential was 24.695 1 t/hm^2.
基金Supported by the National Natural Science Foundation of China (No. 30871737)the 2010 Open Foundation of State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences(No. Y052010038)
文摘A pot experiment was performed to determine the effects of arbuscular mycorrhizM fungi (AMF) communities on soil properties and the growth of cucumber seedlings in a degraded soil that had been used for continuous cucumber monoculture in a greenhouse for 15 years. In the experiment, AMF communities (created by combining various AMF species that were found to be dominant in natural farm soil) were inoculated into the degraded soil, and then the soil was planted with cucumber. Inoculation with AMF communities did not affect soil pH but increased soil aggregate stability and decreased the concentrations of salt ions and electrical conductivity (EC) in the soil. Inoculation with AMF communities increased the numbers of culturable bacteria and actinomycetes but reduced the number of fungi. AMF communities increased plant growth, soluble sugar content, chlorophyll content, and root activity compared to non-mycorrhizal or a single AMF species treatments. Improvements of soil quality and plant growth were greatest with the following two communities: Glomus etunicatum + G. mosseae + Gigaspora margarita + Acaulospora lacunosa and G. aggregatum + G. etunicatum + G. mosseae + G. versiforme + G. margarita + A. lacunosa. The results suggested that certain AMF communities could substantially improve the quality of degraded soil.
基金supported by the National Basic Research Program of China(Grant No.2012CB956202)the National Key Technology R&D Program of China(Grant Nos.2013BAC10B02,2012BAC22B04)the National Natural Science Foundation of China(Grant No.41105048)
文摘Soil moisture droughts can trigger abnormal changes of material and energy cycles in the soil-vegetation-atmosphere system,leading to important effects on local ecosystem,weather,and climate.Drought detection and understanding benefit disaster alleviation,as well as weather and climate predictions based on the understanding the land-atmosphere interactions.We thus simulated soil moisture using land surface model CLM3.5 driven with observed climate in China,and corrected wet bias in soil moisture simulations via introducing soil porosity parameter into soil water parameterization scheme.Then we defined soil moisture drought to quantify spatiotemporal variability of droughts.Over the period from 1951 to 2008,40%of months(to the sum of 12×58)underwent droughts,with the average area of 54.6%of total land area of China's Mainland.The annual monthly drought numbers presented a significant decrease in arid regions,but a significant increase in semi-arid and semi-humid regions,a decrease in humid regions but not significant.The Mainland as a whole experienced an increasing drought trend,with77.3%of areal ratio of decrease to increase.The monthly droughts in winter were the strongest but the weakest in summer,impacting 54.3%and 8.4%total area of the Mainland,respectively.The drought lasting three months or more occurred mainly in the semi-arid and semi-humid regions,with probability>51.7%,even>77.6%,whereas those lasting 6 and 12 months or more impacted mainly across arid and semi-arid regions.
基金supported by the National Natural Science Foundation of China(Grant Nos.91437111&41375111&41675104&41230420)
文摘In this study, the variations in surface soil liquid water(SSLW) due to future climate change are explored in the‘Huang-Huai-Hai Plain'(‘3H') region in China with the Common Land Model(CoLM). To evaluate the possible maximum response of SSLW to climate change, the combination of the conditional nonlinear optimal perturbation related to the parameter(CNOP-P) approach and projections from 10 general circulation models(GCMs) of the Coupled Model Intercomparison Project5(CMIP5) are used. The CNOP-P-type temperature change scenario, a new type of temperature change scenario, is determined by using the CNOP-P method and constrained by the temperature change projections from the 10 GCMs under a high-emission scenario(the Representative Concentration Pathway 8.5 scenario). Numerical results have shown that the response of SSLW to the CNOP-P-type temperature scenario is stronger than those to the 11 temperature scenarios derived from the 10 GCMs and from their ensemble average in the entire ‘3H' region. In the northern region, SSLW under the CNOP-P-type scenario increases to0.1773 m^3 m^(-3); however, SSLW in the scenarios from the GCMs fluctuates from 0.1671 to 0.1748 m^3 m^(-3). In the southern region,SSLW decreases, and its variation(–0.0070 m^3 m^(-3)) due to the CNOP-P-type scenario is higher than each of the variations(–0.0051 to –0.0026 m^3 m^(-3)) due to the scenarios from the GCMs.