Atmospheric sulfur deposition onto typical farmland in East China was investigated using both field measurements and numerical modeling. The field measurements were conducted at the Experiment Station of Red Soil Ecol...Atmospheric sulfur deposition onto typical farmland in East China was investigated using both field measurements and numerical modeling. The field measurements were conducted at the Experiment Station of Red Soil Ecology, Chinese Academy of Sciences, 10 km from Yingtan, Jiangxi Province, East China, between November 1998 and October 1999, and at the Changshu Ecological Experiment Station, Chinese Academy of Sciences, in a rapidly developing region of Jiangsu Province, East China, between April 2001 and Marc…展开更多
To evaluate the responses of fixed and pinned pile groups under torsion, a method is presented to analyze the nonlinear behavior of free-standing pile groups with rigid pile caps. The method is capable of simulating t...To evaluate the responses of fixed and pinned pile groups under torsion, a method is presented to analyze the nonlinear behavior of free-standing pile groups with rigid pile caps. The method is capable of simulating the nonlinear soil response in the near field usingp-y and r-θ curves, the far-field interactions through Mindlin's and Randolph's elastic solutions, and the coupling effect of lateral resistance on torsional resistance of the individual piles using an empirical factor. Based on comparisons of the solutions for fixed- and pinned-head, 1×2, 2×2, and 3×3 pile groups subjected to torsion, it was found that pile-cap connection significantly influences the torsional capacity of pile groups and the assignment of applied torques in the pile groups. In this study, the applied torques for the pinned-head pile groups are only 44%-64% of those for the corresponding fixed-head pile groups at a twist angle of 2^o. Such a difference is mainly due to the change of the lateral resistances of individual piles in the groups.展开更多
Six paddy soils of Shanghai, China, were studied after 120 days of anaerobicincubation at 25 deg C and 35 deg C. Four models, the effective accumulated temperature model, theone-component first-order exponential model...Six paddy soils of Shanghai, China, were studied after 120 days of anaerobicincubation at 25 deg C and 35 deg C. Four models, the effective accumulated temperature model, theone-component first-order exponential model (the one-pool model), the two-component first-orderexponential model (the two-pool model), and the two-component first-order plus zero-orderexponential model including a constant term (the special model), were fitted to the data of observedmineral-N during incubation using non-linear regression procedures. The two-pool model and thespecial model gave the best fits amongst the four models, and parameters in the special model weremore reasonable than those in the other three. Results showed that the special model gave a betterprediction of nitrogen mineralization under flooded conditions than the other three models.展开更多
Based on a case study of Longyou County, Zhejiang Province, the decision tree, a data mining method, was used to analyze the relationships between soil organic matter (SOM) and other environmental and satellite sensin...Based on a case study of Longyou County, Zhejiang Province, the decision tree, a data mining method, was used to analyze the relationships between soil organic matter (SOM) and other environmental and satellite sensing spatial data. The decision tree associated SOM content with some extensive easily observable landscape attributes, such as landform, geology, land use, and remote sensing images, thus transforming the SOM-related information into a clear, quantitative, landscape factor-associated regular syst…展开更多
A two-dimensional numerical model is developed to simulate the flow,transport and biodegradation of toluene during bioventing (BV) processes in the unsaturated zones.The simulation for a single well BV system is use...A two-dimensional numerical model is developed to simulate the flow,transport and biodegradation of toluene during bioventing (BV) processes in the unsaturated zones.The simulation for a single well BV system is used to illustrate the effect of air injection rate on remediation efficiency.The air is injected into the vadose zone to create a positive pressure.Simulation results show that air injection rate is a primary parameter governing the dispersal,redistribution and surface loss of contaminant.At injection rates of 81.504 m3·d-1 (Run 1) and 407.52 m3·d-1 (Run 2),the total removed mass of toluene is 169.14 kg and 170.59 kg respectively.Ratios of volatilization to bio-degradation in Run 1 and Run 2 are 0.57︰1 and 0.89︰1,respectively,indicating that lower air injection rate enhances the biodegradation efficiency greatly.Air injection rate should be optimized to meet oxygen demand and to minimize the operational cost.展开更多
The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of bo...The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of both regional patterns of soil loss and its impact factors in the plateau area. Based on the regional characteristics of precipitation, vegetation and land form, and with the use of Landsat TM and ground investigation data, the entire Loess Plateau was first divided into 3 380 Fundamental Assessment Units (FAUs) to adapt to this regional modeling and fast assessment. A set of easily available parameters reflecting relevant water erosion factors at a regional scale was then developed, in which dynamic and static factors were discriminated. Arclnfo GIS was used to integrate all essential data into a central database. A resulting mathematical model was established to link the sediment yields and the selected variables on the basis of FAUs through overlay in GIS and multiple regression analyses. The sensitivity analyses and validation results show that this approach works effectively in assessing large area soil erosion, and also helps to understand the regional associations of erosion and its impact factors, and thus might significantly contribute to planning and policymaking for a large area erosion control in the Loess Plateau.展开更多
An incubation experiment was conducted to simulate the effect of flooding onwater deoxygenation in acid sulfate soil floodplain systems. The originally oxygenated 'floodwater'could be deoxygenated immediately ...An incubation experiment was conducted to simulate the effect of flooding onwater deoxygenation in acid sulfate soil floodplain systems. The originally oxygenated 'floodwater'could be deoxygenated immediately following 'flooding' and it is likelythat this was caused mainlyby decomposition of organic debris from the inundated plants. Deoxygenation eventually led to thedepletion of dissolved oxygen (DO) in the 'floodwater' and it is highly possible that this resultedin the transformations of ferric Fe to ferrous Fe, sulfate to hydrogen sulfide. and organic nitrogento ammonia (ammonification). The accumulation of these reduced substances allows the 'floodwater'to develop DO-consuming capacity (DOCC). When the 'floodwater' is mixed with the introducedoxygenated water, apart from the dilution effects, the reduced substances contained in the'floodwater' oxidize to further consume DO carried by the introduced water. However, it appears thatthe DO drop in the mixed water can only last for a few hours if no additional DO-depleted'floodwater' is added. Entry of atmospheric oxygen into the water can raise the DO level of themixed water arid lower water pH through the oxidation of the reduced substances.展开更多
Recent advances in computer with geographic information system(GIS) technologies have allowed modelers to develop physics-based models for modeling soil erosion processes in time and space.However, it has been widely ...Recent advances in computer with geographic information system(GIS) technologies have allowed modelers to develop physics-based models for modeling soil erosion processes in time and space.However, it has been widely recognized that the effect of uncertainties on model predictions may be more significant when modelers apply such models for their own modeling purposes.Sources of uncertainty involved in modeling include data, model structural, and parameter uncertainty.To deal with the uncertain parameters of a catchment-scale soil erosion model(CSEM) and assess simulation uncertainties in soil erosion, particle filtering modeling(PF) is introduced in the CSEM.The proposed method, CSEM-PF, estimates parameters of non-linear and non-Gaussian systems, such as a physics-based soil erosion model by assimilating observation data such as discharge and sediment discharge sequences at outlets.PF provides timevarying feasible parameter sets as well as uncertainty bounds of outputs while traditional automatic calibration techniques result in a time-invariant global optimal parameter set.CSEM-PF was applied to a small mountainous catchment of the Yongdamdam in Korea for soil erosion modeling and uncertainty assessment for three historical typhoon events.Finally, the most optimal parameter sets and uncertainty bounds of simulation of both discharge and sediment discharge at each time step of the study events are provided.展开更多
The spatial distribution of soil physical properties is essential for modeling and understanding hydrological processes. In this study, the different spatial information (the conventional soil types map-based spatial ...The spatial distribution of soil physical properties is essential for modeling and understanding hydrological processes. In this study, the different spatial information (the conventional soil types map-based spatial information (STMB) versus refined spatial information map (RSIM)) of soil physical properties, including field capacity, soil porosity and saturated hydraulic conductivity are used respectively as input data for Water Flow Model for Lake Catchment (WATLAC) to determine their effectiveness in simulating hydrological processes and to expound the effects on model performance in terms of estimating groundwater recharge, soil evaporation, runoff generation as well as partitioning of surface and subsurface water flow. The results show that: 1) the simulated stream flow hydrographs based on the STMB and RSIM soil data reproduce the observed hydrographs well. There is no significant increase in model accuracy as more precise soil physical properties information being used, but WATLAC model using the RSIM soil data could predict more runoff volume and reduce the relative runoff depth errors; 2) the groundwater recharges have a consistent trend for both cases, while the STMB soil data tend to produce higher groundwater recharges than the RSIM soil data. In addition, the spatial distribution of annual groundwater recharge is significantly affected by the spatial distribution of soil physical properties; 3) the soil evaporation simulated using the STMB and RSIM soil data are similar to each other, and the spatial distribution patterns are also insensitive to the spatial information of soil physical properties; and 4) although the different spatial information of soil physical properties does not cause apparent difference in overall stream flow, the partitioning of surface and subsurface water flow is distinct. The implications of this study are that the refined spatial information of soil physical properties does not necessarily contribute to a more accurate prediction of stream flow, and the selection of appropriate soil physical property data needs to consider the scale of watersheds and the level of accuracy required.展开更多
To use the 0th-order τ-ω model to retrieve soil moisture from radiometric data at frequencies higher than the C band, the characteristics of the effective single scattering albedo ω and the opacity rof vegetation m...To use the 0th-order τ-ω model to retrieve soil moisture from radiometric data at frequencies higher than the C band, the characteristics of the effective single scattering albedo ω and the opacity rof vegetation must be studied. In this paper, the co and r values of corn for the C, X, and Ku bands were retrieved by matching the simulations of a high-order matrix-doubling model to the τ-ω model. First, the brightness temperature of the matrix-doubling was validated by a truck-mounted radiometer in a field experiment, where the vegetation emission contributions were validated with aluminum foil to mask the soil emission. Then an emissivity database of corn fields for different growing seasons was established for a variety of soil conditions. With the transmissivity of corn determined from the database, the effective single scattering albedos of corn for different heights at the C, X, and Ku bands and at a 55° viewing angle were derived. To verify the accuracy of the derived co and τ values, we used SMEX02/PSR aircraft data and the Qp model to retrieve the soil moisture; the RMSE between the retrieval and the measurements was 4.76% at the C band and 5.36% at the X band.展开更多
Grassland reconstruction is a major approach to alleviate the‘black beach’in Sanjiangyuan of the Qinghai-Tibetan Plateau.It is vital to understand how to manage the planting grassland after reconstruction.And which ...Grassland reconstruction is a major approach to alleviate the‘black beach’in Sanjiangyuan of the Qinghai-Tibetan Plateau.It is vital to understand how to manage the planting grassland after reconstruction.And which artificial grassland management pattern is more likely to restore the degraded grassland of‘black beach?’To provide the scientific basis for the restoration of‘black beach’,we investigated the changes in vegetation characteristics,soil physicochemical properties and soil microbial community structure of planting grassland under different management patterns,and explored the effect of the management patterns on community succession of planting grassland.In this study,vegetation characteristics and soil physicochemical properties were measured by field investigation and laboratory analyses,respectively.Soil microbial community composition was determined by high-throughput sequencing techniques.The results showed that there were significant differences in vegetation characteristics,soil physicochemical properties and soil microbial community structure of the planting grassland under different management patterns.Actinobacteria and Basidiomycota were mainly controlled by vegetation plant species diversity,aboveground biomass(AGB)and soil organic carbon(SOC).Shannon-Wiener index,AGB and SOC peaked and the relative abundance of amplicon sequence variants annotated by Actinobacteria and Basidiomycota were significantly enriched under the management pattern of the planting once treatment.Additionally,the soil had the highest bacterial diversity and the lowest fungal diversity under the planting once treatment,becoming a‘bacterial’soil.These vegetation characteristics and soil environment were more conducive to overall positive community succession,indicating that the planting once treatment is the most reasonable management pattern for restoring the‘black beach’.展开更多
Development of a quantitative understanding of soil organic carbon (SOC) dynamics is vital for management of soil to sequester carbon (C) and maintain fertility, thereby contributing to food security and climate c...Development of a quantitative understanding of soil organic carbon (SOC) dynamics is vital for management of soil to sequester carbon (C) and maintain fertility, thereby contributing to food security and climate change mitigation. There are well-established process-based models that can be used to simulate SOC stock evolution; however, there are few plant residue C input values and those that exist represent a limited range of environments. This limitation in a fundamental model component (i.e., C input) constrains the reliability of current SOC stock simulations. This study aimed to estimate crop-specific and environment-specific plant-derived soil C input values for agricultural sites in France based on data from 700 sites selected from a recently established French soil monitoring network (the RMQS database). Measured SOC stock values from this large scale soil database were used to constrain an inverse RothC modelling approach to derive estimated C input values consistent with the stocks. This approach allowed us to estimate significant crop-specific C input values (P 〈 0.05) for 14 out of 17 crop types in the range from 1.84 =h 0.69 t C ha-1 year-1 (silage corn) to 5.15 =k 0.12 t C ha-1 year-1 (grassland/pasture). Furthermore, the incorporation of climate variables improved the predictions. C input of 4 crop types could be predicted as a function of temperature and 8 as a function of precipitation. This study offered an approach to meet the urgent need for crop-specific and environment-specific C input values in order to improve the reliability of SOC stock prediction.展开更多
A mathematical model for salt transport by a cylindrical root in an infinite extent of soil is derived and solved analytically by asymptotic matching of the inner and outer solutions. By asymptotic analysis it is show...A mathematical model for salt transport by a cylindrical root in an infinite extent of soil is derived and solved analytically by asymptotic matching of the inner and outer solutions. By asymptotic analysis it is shown that the salt solution uptake by a single cylindrical root in the absence of competition does not influence the overall salt concentration in the soil even when the soil moisture concentration is less than full saturation.展开更多
文摘Atmospheric sulfur deposition onto typical farmland in East China was investigated using both field measurements and numerical modeling. The field measurements were conducted at the Experiment Station of Red Soil Ecology, Chinese Academy of Sciences, 10 km from Yingtan, Jiangxi Province, East China, between November 1998 and October 1999, and at the Changshu Ecological Experiment Station, Chinese Academy of Sciences, in a rapidly developing region of Jiangsu Province, East China, between April 2001 and Marc…
基金Project (No. HKUST 6037/01E) supported by the Research GrantsCouncil of Hong Kong SAR, China
文摘To evaluate the responses of fixed and pinned pile groups under torsion, a method is presented to analyze the nonlinear behavior of free-standing pile groups with rigid pile caps. The method is capable of simulating the nonlinear soil response in the near field usingp-y and r-θ curves, the far-field interactions through Mindlin's and Randolph's elastic solutions, and the coupling effect of lateral resistance on torsional resistance of the individual piles using an empirical factor. Based on comparisons of the solutions for fixed- and pinned-head, 1×2, 2×2, and 3×3 pile groups subjected to torsion, it was found that pile-cap connection significantly influences the torsional capacity of pile groups and the assignment of applied torques in the pile groups. In this study, the applied torques for the pinned-head pile groups are only 44%-64% of those for the corresponding fixed-head pile groups at a twist angle of 2^o. Such a difference is mainly due to the change of the lateral resistances of individual piles in the groups.
基金Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. G199901881).
文摘Six paddy soils of Shanghai, China, were studied after 120 days of anaerobicincubation at 25 deg C and 35 deg C. Four models, the effective accumulated temperature model, theone-component first-order exponential model (the one-pool model), the two-component first-orderexponential model (the two-pool model), and the two-component first-order plus zero-orderexponential model including a constant term (the special model), were fitted to the data of observedmineral-N during incubation using non-linear regression procedures. The two-pool model and thespecial model gave the best fits amongst the four models, and parameters in the special model weremore reasonable than those in the other three. Results showed that the special model gave a betterprediction of nitrogen mineralization under flooded conditions than the other three models.
文摘Based on a case study of Longyou County, Zhejiang Province, the decision tree, a data mining method, was used to analyze the relationships between soil organic matter (SOM) and other environmental and satellite sensing spatial data. The decision tree associated SOM content with some extensive easily observable landscape attributes, such as landform, geology, land use, and remote sensing images, thus transforming the SOM-related information into a clear, quantitative, landscape factor-associated regular syst…
基金Supported by the National High Technology Research and Development Program("863"Program)of China(2009AA063102,2007AA061202)
文摘A two-dimensional numerical model is developed to simulate the flow,transport and biodegradation of toluene during bioventing (BV) processes in the unsaturated zones.The simulation for a single well BV system is used to illustrate the effect of air injection rate on remediation efficiency.The air is injected into the vadose zone to create a positive pressure.Simulation results show that air injection rate is a primary parameter governing the dispersal,redistribution and surface loss of contaminant.At injection rates of 81.504 m3·d-1 (Run 1) and 407.52 m3·d-1 (Run 2),the total removed mass of toluene is 169.14 kg and 170.59 kg respectively.Ratios of volatilization to bio-degradation in Run 1 and Run 2 are 0.57︰1 and 0.89︰1,respectively,indicating that lower air injection rate enhances the biodegradation efficiency greatly.Air injection rate should be optimized to meet oxygen demand and to minimize the operational cost.
基金Under the auspices of Northeast Normal University Sci-tech Innovation Incubation Program(No.NENU-STC08017)European Commission FP7 Project―PRACTICE(No.ENVI-2008-226818)
文摘The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of both regional patterns of soil loss and its impact factors in the plateau area. Based on the regional characteristics of precipitation, vegetation and land form, and with the use of Landsat TM and ground investigation data, the entire Loess Plateau was first divided into 3 380 Fundamental Assessment Units (FAUs) to adapt to this regional modeling and fast assessment. A set of easily available parameters reflecting relevant water erosion factors at a regional scale was then developed, in which dynamic and static factors were discriminated. Arclnfo GIS was used to integrate all essential data into a central database. A resulting mathematical model was established to link the sediment yields and the selected variables on the basis of FAUs through overlay in GIS and multiple regression analyses. The sensitivity analyses and validation results show that this approach works effectively in assessing large area soil erosion, and also helps to understand the regional associations of erosion and its impact factors, and thus might significantly contribute to planning and policymaking for a large area erosion control in the Loess Plateau.
基金Project partly supported by Australian Research Council and NSW Agriculture.
文摘An incubation experiment was conducted to simulate the effect of flooding onwater deoxygenation in acid sulfate soil floodplain systems. The originally oxygenated 'floodwater'could be deoxygenated immediately following 'flooding' and it is likelythat this was caused mainlyby decomposition of organic debris from the inundated plants. Deoxygenation eventually led to thedepletion of dissolved oxygen (DO) in the 'floodwater' and it is highly possible that this resultedin the transformations of ferric Fe to ferrous Fe, sulfate to hydrogen sulfide. and organic nitrogento ammonia (ammonification). The accumulation of these reduced substances allows the 'floodwater'to develop DO-consuming capacity (DOCC). When the 'floodwater' is mixed with the introducedoxygenated water, apart from the dilution effects, the reduced substances contained in the'floodwater' oxidize to further consume DO carried by the introduced water. However, it appears thatthe DO drop in the mixed water can only last for a few hours if no additional DO-depleted'floodwater' is added. Entry of atmospheric oxygen into the water can raise the DO level of themixed water arid lower water pH through the oxidation of the reduced substances.
基金supported by Korea Ministry of Environment(MOE)as"GAIA Program2014000540005"
文摘Recent advances in computer with geographic information system(GIS) technologies have allowed modelers to develop physics-based models for modeling soil erosion processes in time and space.However, it has been widely recognized that the effect of uncertainties on model predictions may be more significant when modelers apply such models for their own modeling purposes.Sources of uncertainty involved in modeling include data, model structural, and parameter uncertainty.To deal with the uncertain parameters of a catchment-scale soil erosion model(CSEM) and assess simulation uncertainties in soil erosion, particle filtering modeling(PF) is introduced in the CSEM.The proposed method, CSEM-PF, estimates parameters of non-linear and non-Gaussian systems, such as a physics-based soil erosion model by assimilating observation data such as discharge and sediment discharge sequences at outlets.PF provides timevarying feasible parameter sets as well as uncertainty bounds of outputs while traditional automatic calibration techniques result in a time-invariant global optimal parameter set.CSEM-PF was applied to a small mountainous catchment of the Yongdamdam in Korea for soil erosion modeling and uncertainty assessment for three historical typhoon events.Finally, the most optimal parameter sets and uncertainty bounds of simulation of both discharge and sediment discharge at each time step of the study events are provided.
基金Under the auspices of Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (No. IWHR-SKL-201111)National Natural Science Foundation of China (No. 41101024)
文摘The spatial distribution of soil physical properties is essential for modeling and understanding hydrological processes. In this study, the different spatial information (the conventional soil types map-based spatial information (STMB) versus refined spatial information map (RSIM)) of soil physical properties, including field capacity, soil porosity and saturated hydraulic conductivity are used respectively as input data for Water Flow Model for Lake Catchment (WATLAC) to determine their effectiveness in simulating hydrological processes and to expound the effects on model performance in terms of estimating groundwater recharge, soil evaporation, runoff generation as well as partitioning of surface and subsurface water flow. The results show that: 1) the simulated stream flow hydrographs based on the STMB and RSIM soil data reproduce the observed hydrographs well. There is no significant increase in model accuracy as more precise soil physical properties information being used, but WATLAC model using the RSIM soil data could predict more runoff volume and reduce the relative runoff depth errors; 2) the groundwater recharges have a consistent trend for both cases, while the STMB soil data tend to produce higher groundwater recharges than the RSIM soil data. In addition, the spatial distribution of annual groundwater recharge is significantly affected by the spatial distribution of soil physical properties; 3) the soil evaporation simulated using the STMB and RSIM soil data are similar to each other, and the spatial distribution patterns are also insensitive to the spatial information of soil physical properties; and 4) although the different spatial information of soil physical properties does not cause apparent difference in overall stream flow, the partitioning of surface and subsurface water flow is distinct. The implications of this study are that the refined spatial information of soil physical properties does not necessarily contribute to a more accurate prediction of stream flow, and the selection of appropriate soil physical property data needs to consider the scale of watersheds and the level of accuracy required.
基金supported by National Natural Science Foundations of China (Grant Nos. 41171266 and 41030534)
文摘To use the 0th-order τ-ω model to retrieve soil moisture from radiometric data at frequencies higher than the C band, the characteristics of the effective single scattering albedo ω and the opacity rof vegetation must be studied. In this paper, the co and r values of corn for the C, X, and Ku bands were retrieved by matching the simulations of a high-order matrix-doubling model to the τ-ω model. First, the brightness temperature of the matrix-doubling was validated by a truck-mounted radiometer in a field experiment, where the vegetation emission contributions were validated with aluminum foil to mask the soil emission. Then an emissivity database of corn fields for different growing seasons was established for a variety of soil conditions. With the transmissivity of corn determined from the database, the effective single scattering albedos of corn for different heights at the C, X, and Ku bands and at a 55° viewing angle were derived. To verify the accuracy of the derived co and τ values, we used SMEX02/PSR aircraft data and the Qp model to retrieve the soil moisture; the RMSE between the retrieval and the measurements was 4.76% at the C band and 5.36% at the X band.
基金financially supported by the‘Strategic Leading Science&Technology Program’of the Chinese Academy of Sciences(XDA23060604)the Chinese Academy of Sciences‘Light of West China’Program,the Second.Tibetan Plateau Scientific Expedition and Research(STEP)Program(2019QZKK0302)+1 种基金the National Natural Science Foundation of China(31770501)Key Laboratory of Ecology and Environment in Minority Areas(Minzu University of China),National Ethnic Affairs Commission(KLEEMA202103).
文摘Grassland reconstruction is a major approach to alleviate the‘black beach’in Sanjiangyuan of the Qinghai-Tibetan Plateau.It is vital to understand how to manage the planting grassland after reconstruction.And which artificial grassland management pattern is more likely to restore the degraded grassland of‘black beach?’To provide the scientific basis for the restoration of‘black beach’,we investigated the changes in vegetation characteristics,soil physicochemical properties and soil microbial community structure of planting grassland under different management patterns,and explored the effect of the management patterns on community succession of planting grassland.In this study,vegetation characteristics and soil physicochemical properties were measured by field investigation and laboratory analyses,respectively.Soil microbial community composition was determined by high-throughput sequencing techniques.The results showed that there were significant differences in vegetation characteristics,soil physicochemical properties and soil microbial community structure of the planting grassland under different management patterns.Actinobacteria and Basidiomycota were mainly controlled by vegetation plant species diversity,aboveground biomass(AGB)and soil organic carbon(SOC).Shannon-Wiener index,AGB and SOC peaked and the relative abundance of amplicon sequence variants annotated by Actinobacteria and Basidiomycota were significantly enriched under the management pattern of the planting once treatment.Additionally,the soil had the highest bacterial diversity and the lowest fungal diversity under the planting once treatment,becoming a‘bacterial’soil.These vegetation characteristics and soil environment were more conducive to overall positive community succession,indicating that the planting once treatment is the most reasonable management pattern for restoring the‘black beach’.
基金Supported by the Soil Scientific Interest Group (GIS Sol) of Francefinanced by the "Groupement d'Intrêt Scientifique Sol". Jeroen Meersmans' postdoctoral position was funded by the French Environment and Energy Management Agency (ADEME)funded by the EU projects "Greenhouse gas management in European land use systems (GHG-Europe)" (FP7-ENV-2009-1-244122) and "CARBO-Extreme" (FP7-ENV-2008-1-226701)
文摘Development of a quantitative understanding of soil organic carbon (SOC) dynamics is vital for management of soil to sequester carbon (C) and maintain fertility, thereby contributing to food security and climate change mitigation. There are well-established process-based models that can be used to simulate SOC stock evolution; however, there are few plant residue C input values and those that exist represent a limited range of environments. This limitation in a fundamental model component (i.e., C input) constrains the reliability of current SOC stock simulations. This study aimed to estimate crop-specific and environment-specific plant-derived soil C input values for agricultural sites in France based on data from 700 sites selected from a recently established French soil monitoring network (the RMQS database). Measured SOC stock values from this large scale soil database were used to constrain an inverse RothC modelling approach to derive estimated C input values consistent with the stocks. This approach allowed us to estimate significant crop-specific C input values (P 〈 0.05) for 14 out of 17 crop types in the range from 1.84 =h 0.69 t C ha-1 year-1 (silage corn) to 5.15 =k 0.12 t C ha-1 year-1 (grassland/pasture). Furthermore, the incorporation of climate variables improved the predictions. C input of 4 crop types could be predicted as a function of temperature and 8 as a function of precipitation. This study offered an approach to meet the urgent need for crop-specific and environment-specific C input values in order to improve the reliability of SOC stock prediction.
文摘A mathematical model for salt transport by a cylindrical root in an infinite extent of soil is derived and solved analytically by asymptotic matching of the inner and outer solutions. By asymptotic analysis it is shown that the salt solution uptake by a single cylindrical root in the absence of competition does not influence the overall salt concentration in the soil even when the soil moisture concentration is less than full saturation.