通过两年的田间试验,利用叶绿素仪(SPAD-502)测定了不同生育时期水稻(南粳44号)冠层叶片的SPAD(soilplant analysed and development)值、叶绿素含量、叶氮含量及净光合速率,在此基础上分析了SPAD值与叶绿素含量、叶氮含量及净光合速率...通过两年的田间试验,利用叶绿素仪(SPAD-502)测定了不同生育时期水稻(南粳44号)冠层叶片的SPAD(soilplant analysed and development)值、叶绿素含量、叶氮含量及净光合速率,在此基础上分析了SPAD值与叶绿素含量、叶氮含量及净光合速率的关系。结果表明:水稻冠层叶片的SPAD值与叶绿素含量、叶氮含量及净光合速率的关系均呈显著相关,但是在不同的生育期内SPAD值与其他三项指标的变化并没有同步,存在一定时间的超前或者滞后。随着叶绿素荧光分析技术的发展,无损伤、快速、灵敏测定叶片光合作用的变化成为可能,因此想要更好地了解叶片光合作用的内在变化,还需要研究SPAD值与各项叶绿素荧光参数的关系。展开更多
Some Inceptisols representing the Singla catchment area in Karimgaungedistrict of Assam, India, were studied for lime requirement as influenced by the nature of soilacidity. The electrostatically bonded (EB)-H^+ and E...Some Inceptisols representing the Singla catchment area in Karimgaungedistrict of Assam, India, were studied for lime requirement as influenced by the nature of soilacidity. The electrostatically bonded (EB)-H^+ and EB-Al^(3+) acidities constituted 33 and 67percent of exchangeable acidity while EB-H^+, EB-Al^(3+), exchangeable and pH-dependent aciditiescomprised 6, 14, 20 and 80 percent of total potential acidity. The pH-dependent acidity made a majorcontribution towards the total potential acidity (67%~84%). Grand mean of lime requirementdetermined by the laboratory incubation method and estimated by the methods of New Woodruff,Woodruff and Peech as expressed in MgCaCO_3 ha^(-1) was in the order: Woodruff (15.6) > New Woodruff(14.9) > Peech (5.1) > incubation (5.0). Correlations analysis among different forms of acidity andlime requirement methods with selected soil properties showed that pH in three media, namely water,1 mol L^(-1) KC1 and 0.01 mol L^(-1) CaCl_2, had a significant negative correlation with differentforms of acidity and lime requirement methods. Exchangeable Fe and Al showed significant positivecorrelations with EB-Al^(3+) acidity, exchangeable acidity, pH-dependent acidity and total potentialacidity, and also lime requirement methods. Extractable Al showed positive correlations withdifferent forms of acidity except EB-H^+ and EB-Al^(3+) acidities. The lime requirement by differentmethods depended upon the extractable aluminium. Significant positive correlations existed betweenlime requirements and different forms of acidity of the soils except EB-H^+ acidity and incubationmethod. The nature of soil acidity was mostly pH-dependent. Statistically, the Woodruff method didslightly better than the New Woodruff, incubation and Peech methods at estimating lime requirementand hence the Woodruff procedure may be recommended for routine soil testing because of its speedand simplicity.展开更多
Soil environment in Sanjiang Plain has changed greatly because of the reclamation on a large scale.The physical and chemical properties of soil have changed, and soil erosion, soil saline-alkalization and soil polluti...Soil environment in Sanjiang Plain has changed greatly because of the reclamation on a large scale.The physical and chemical properties of soil have changed, and soil erosion, soil saline-alkalization and soil pollution occurred in some areas. These problems have obstructed the sustainable development of agriculture. For the sustainable use of soils in Sanjiang Plain, in this paper we raise some suggestions and countermeasures which might be references for experts and departments concerned.展开更多
Two Inceptisols and an Alfisol of the Indravati Catchment area in Chattisgarh, India, comprising several gradientsin physical and chemical properties were studied to relate phosphate sorption and desorption to soil pr...Two Inceptisols and an Alfisol of the Indravati Catchment area in Chattisgarh, India, comprising several gradientsin physical and chemical properties were studied to relate phosphate sorption and desorption to soil properties. Fromthe P isotherm curve, the standard P requirement (SPR) of the soils was determined. Phosphate sorption data were alsofitted both to the Langmuir and Freundlich Equations. The mean sorption maximum values for three different soil serieswere: Bastar > Geedam > Mosodi. The fraction of added phosphate sorbed for the 3 series followed this same trend asdid SPR; the phosphate sorption maximum and the maximum phosphate buffering capacity, which were estimated by theLangmuir isotherm; and the Freundlich constant 1/n. However, phosphate desorption, as well as the maximum recoverypercent did not follow this order. The phosphate affinity constant (K) was also different following the same progressionfor the 3 soil series as the Freundlich constant K’, which measured sorption strength. Meanwhile, an inverse order existedfor K and K’ versus the percent desorbed relative to the sorbed as well as the maximum recovery percent. In addition,significant correlation coefficients among sorption parameters of P and soil factors were found.展开更多
Alternating rainfall and evaporation in nature severely impact the shear strength of expansive soils. This study presents an instrument for simulating the effect of wetting–drying cycles on the strength of expansive ...Alternating rainfall and evaporation in nature severely impact the shear strength of expansive soils. This study presents an instrument for simulating the effect of wetting–drying cycles on the strength of expansive soils under different loads, and its testing error is verified. With this instrument,direct shear tests were performed on samples experiencing 0-6 cycles under vertical loads of 0 kPa,5 kPa, 15 kPa, and 30 k Pa. The results found that this instrument provides a new method for evaluating the effects of wetting–drying cycles on soils, and this method represents actual engineering conditions more accurately than do preexisting methods. It accurately controls the water content within 1% while simulating the specified loads at different soil depths.Cohesion is significantly affected by wetting–drying cycles, while the friction angle is not as sensitive to these cycles. Decrease in shear strength can be attributed to the fissures in soils caused by wetting–drying cycles. The existence of vertical loads effectively restricts shrinkage fissuring and cohesion attenuation, consequently inhibiting the attenuation of shear strength.展开更多
Cave air CO_2 is a vital part of the cave environment. Most studies about cave air CO_2 variations are performed in caves with no streams; there are few studies to date regarding the relationship of cave air CO_2 vari...Cave air CO_2 is a vital part of the cave environment. Most studies about cave air CO_2 variations are performed in caves with no streams; there are few studies to date regarding the relationship of cave air CO_2 variations and drip water hydrochemistry in underground stream–developed caves. To study the relationship of underground stream, drip water, and cave air CO_2, monthly and daily monitoring of air CO_2 and of underground stream and drip water was performed in Xueyu Cave from 2012 to 2013.The results revealed that there was marked seasonal variation of air CO_2 and stream hydrochemistry in the cave. Daily variations of cave air CO_2, and of stream and drip water hydrochemistry, were notable during continuous monitoring.A dilution effect was observed by analyzing hydrochemical variations in underground stream and drip water after rainfall. High cave air CO_2 along with low p H and low δ^(13)C DIC in stream and drip water indicated that air CO_2 was one of the dominant factors controlling stream and drip water hydrochemistry on a daily scale. On a seasonal scale, stream flows may promote increased cave air CO_2 in summer; in turn, the higher cave air CO_2 could inhibit degassing of drip water and make calcite δ^(13)C more negative. Variation of calcite δ^(13)C(precipitated from drip water) was in reverse of monthly temperature, soil CO_2, and cave air CO_2. Therefore,calcite δ^(13)C in Xueyu Cave could be used to determine monthly changes outside the cave. However, considering the different precipitation rate of sediment in different seasons,it was difficult to use stalagmites to reconstruct environmental change on a seasonal scale.展开更多
Soils developed from the Quaternary loesslike loams have been studied in the south of the forest-steppe zone on the Central Russian Upland. A polygenetic nature of the soil profile on the loesslike loams is shown. The...Soils developed from the Quaternary loesslike loams have been studied in the south of the forest-steppe zone on the Central Russian Upland. A polygenetic nature of the soil profile on the loesslike loams is shown. The modem pedogenetic processes in this soil ensure its eluvial-illuvial differentiation with the development of multilayered coatings in the illuvial horizon. The middle horizons in the studied soil profiles are referred to as textural (clay-illuvial) horizons. Differences in physical soil properties (bulk density, airconductivity, texture, water content, and temperature dynamics) were studied in the soil on the loesslike loam.展开更多
Heavy metal pollution in karst mountainous area of Guizhou has spread due to the long-term exploitation of mineral resources and the improper disposal of environmentally hazardous waste. Heavy metals are characterised...Heavy metal pollution in karst mountainous area of Guizhou has spread due to the long-term exploitation of mineral resources and the improper disposal of environmentally hazardous waste. Heavy metals are characterised by non-degradation, strong toxicity, and constant accumulation, posing a grave threat to karst mountain fragile soil ecosystem. To reduce the harm caused by heavy metal pollution and damage to agricultural products, research was undertaken on the basis of previous work by simulating pot experiments on pak choi cabbage(Brassica rapa chinensis)planted in Cd-contaminated soil: different amounts of organic mineral fertilisers(OMF) compared with chemical fertiliser(CF) were used and by detecting the amount of heavy metal in the mature vegetable, a better fertilisation strategy was developed. The results showed that the Cd content in vegetables grown with CF was 23.70 mg/kg,while that of vegetables grown with OMF and bacterial inoculant was the lowest at 15.13 mg/kg. This suggests that the use of OMF and microbes in karst areas not only promotes plant growth but also hinders plant absorption of heavy metal ions in the soil. In addition, through the collection of pot leachate, the detection of water chemistrycharacteristics, and the calculation of the calcite saturation index, it was found that the OMF method also induces certain carbon sink effects. The results provide a new way in which rationalise the use of OMFs in karst areas to alleviate soil heavy metal pollution and increase soil carbon sequestration.展开更多
Seismic safety of underground structures is one of the main concerns in underground space exploitation. As the first step for dynamic seismic response analysis, the free vibration of long large cross-section undergrou...Seismic safety of underground structures is one of the main concerns in underground space exploitation. As the first step for dynamic seismic response analysis, the free vibration of long large cross-section underground structures is studied in the present paper. The general free transverse vibration motion equation of long large cross-section underground structure is derived with the comprehensive consideration of internal and external damping, effects of shear, cross-sectional rotational inertia and axial force, and a twoparameter soil model. In this way, Timoshenko's beam theory is extended. Two limit cases of free transverse vibration of underground structures are discussed. Parameter study shows that in general wave propagation velocities in structures increase with soil elastic parameters. However the influence of Winkler's parameter k is significant while the effect of the second soil elastic parameter gp is insignificant. The free vibration frequency of underground structures increases with relative wave number and soil elastic parameters. Unlike the influence of soil elastic parameters on wave propagation velocities, the influence of soil elastic parameters k and gp on the vibration frequency of underground structures have the same order; therefore the influence of the second soil parameter gp on the free vibration of underground structures should not be neglected in dynamic seismic analysis of underground structures展开更多
Modeling the hydrological processes at catchment scale requires a flexible distributed scheme to represent the catchment to- pography, river network and vegetation pattern. This study has developed a distributed schem...Modeling the hydrological processes at catchment scale requires a flexible distributed scheme to represent the catchment to- pography, river network and vegetation pattern. This study has developed a distributed scheme for eco-hydrological simulation in the upper Heihe River. Based on a 1 km x 1 km grid system, the study catchment is divided into 461 sub-catchments, whose main streams form the streamflow pathway. Furthermore, a 1 km grid is represented by a number of topographically similar "hillslope-valley" systems, and the hillslope is the basic unit of the eco-hydrological simulation. This model is tested with a simplified hydrological simulation focusing on soil-water dynamics and streamflow routing. Based on a 12-year simulation from 2001 to 2012, it is found that variability in hydrological behavior is closely associated with climatic and landscape condi- tions especially vegetation types. The subsurface and groundwater flows dominate the total river runoff. This implies that the soil freezing and thawing process would significantly influence the runoff generation in the upper Heihe basin. Furthermore, the runoff components and water balance characteristics vary among different vegetation types, showing the importance of coupling the vegetation pattern into catchment hydrological simulation. This paper also discusses the model improvement to be done in future study.展开更多
Limited information is available on the distribution and origin of palygorkite in soils developed on Tertiary sediments as the major soil parent materials in central Iran and other Middle Eastern countries. The object...Limited information is available on the distribution and origin of palygorkite in soils developed on Tertiary sediments as the major soil parent materials in central Iran and other Middle Eastern countries. The objectives of this study were to determine the distribution and origin of palygorskite in soils developed on Tertiary sediments, and to identify the major soil properties that influence palygorskite distribution in the soils studied. Sixteen soil profiles developed on Paleocene, Eocene, Oligocene, Oligocene-Miocene, Miocene and Pliocene sediments were studied by X-ray diffraction analysis, transmission electron microscope, and scanning electron microscopy. Physicochemical characteristics of the soils and sediments including particle size distribution, pH, electrical conductivity, organic carbon, gypsum, carbonates, and soluble Si, Ca and Mg were determined. The principal component analysis was used to establish the relationships between palygorskite and the physicochemical characteristics of the soils studied. Results showed that clay fraction of all the soils in the study area was dominated by palygorskite. The highest amount of palygorskite was found in horizons where simultaneous accumulation of both carbonates and gypsum occurred. Limited amount of palygorskite was found in salic and calcic horizons. Palygorskite seemed to be of eolian origin in the surface horizon of all the soils. Using principal component analysis, the soluble Mg/Ca ratio, pH, soluble Si and gypsum contents were identified as the most important factors affecting the distribution and genesis of palygorskite in the soils studied. Results might suggest the neoformation of palygorskite by precipitation from solutions in which evaporation fluxes were very high. However, palygorskite in soils developed on Tertiary sediments in central Iran seems to be of both inherited and pedogenic origins.展开更多
文摘通过两年的田间试验,利用叶绿素仪(SPAD-502)测定了不同生育时期水稻(南粳44号)冠层叶片的SPAD(soilplant analysed and development)值、叶绿素含量、叶氮含量及净光合速率,在此基础上分析了SPAD值与叶绿素含量、叶氮含量及净光合速率的关系。结果表明:水稻冠层叶片的SPAD值与叶绿素含量、叶氮含量及净光合速率的关系均呈显著相关,但是在不同的生育期内SPAD值与其他三项指标的变化并没有同步,存在一定时间的超前或者滞后。随着叶绿素荧光分析技术的发展,无损伤、快速、灵敏测定叶片光合作用的变化成为可能,因此想要更好地了解叶片光合作用的内在变化,还需要研究SPAD值与各项叶绿素荧光参数的关系。
文摘Some Inceptisols representing the Singla catchment area in Karimgaungedistrict of Assam, India, were studied for lime requirement as influenced by the nature of soilacidity. The electrostatically bonded (EB)-H^+ and EB-Al^(3+) acidities constituted 33 and 67percent of exchangeable acidity while EB-H^+, EB-Al^(3+), exchangeable and pH-dependent aciditiescomprised 6, 14, 20 and 80 percent of total potential acidity. The pH-dependent acidity made a majorcontribution towards the total potential acidity (67%~84%). Grand mean of lime requirementdetermined by the laboratory incubation method and estimated by the methods of New Woodruff,Woodruff and Peech as expressed in MgCaCO_3 ha^(-1) was in the order: Woodruff (15.6) > New Woodruff(14.9) > Peech (5.1) > incubation (5.0). Correlations analysis among different forms of acidity andlime requirement methods with selected soil properties showed that pH in three media, namely water,1 mol L^(-1) KC1 and 0.01 mol L^(-1) CaCl_2, had a significant negative correlation with differentforms of acidity and lime requirement methods. Exchangeable Fe and Al showed significant positivecorrelations with EB-Al^(3+) acidity, exchangeable acidity, pH-dependent acidity and total potentialacidity, and also lime requirement methods. Extractable Al showed positive correlations withdifferent forms of acidity except EB-H^+ and EB-Al^(3+) acidities. The lime requirement by differentmethods depended upon the extractable aluminium. Significant positive correlations existed betweenlime requirements and different forms of acidity of the soils except EB-H^+ acidity and incubationmethod. The nature of soil acidity was mostly pH-dependent. Statistically, the Woodruff method didslightly better than the New Woodruff, incubation and Peech methods at estimating lime requirementand hence the Woodruff procedure may be recommended for routine soil testing because of its speedand simplicity.
文摘Soil environment in Sanjiang Plain has changed greatly because of the reclamation on a large scale.The physical and chemical properties of soil have changed, and soil erosion, soil saline-alkalization and soil pollution occurred in some areas. These problems have obstructed the sustainable development of agriculture. For the sustainable use of soils in Sanjiang Plain, in this paper we raise some suggestions and countermeasures which might be references for experts and departments concerned.
文摘Two Inceptisols and an Alfisol of the Indravati Catchment area in Chattisgarh, India, comprising several gradientsin physical and chemical properties were studied to relate phosphate sorption and desorption to soil properties. Fromthe P isotherm curve, the standard P requirement (SPR) of the soils was determined. Phosphate sorption data were alsofitted both to the Langmuir and Freundlich Equations. The mean sorption maximum values for three different soil serieswere: Bastar > Geedam > Mosodi. The fraction of added phosphate sorbed for the 3 series followed this same trend asdid SPR; the phosphate sorption maximum and the maximum phosphate buffering capacity, which were estimated by theLangmuir isotherm; and the Freundlich constant 1/n. However, phosphate desorption, as well as the maximum recoverypercent did not follow this order. The phosphate affinity constant (K) was also different following the same progressionfor the 3 soil series as the Freundlich constant K’, which measured sorption strength. Meanwhile, an inverse order existedfor K and K’ versus the percent desorbed relative to the sorbed as well as the maximum recovery percent. In addition,significant correlation coefficients among sorption parameters of P and soil factors were found.
基金provided by the National Natural Science Foundation of China (Grant No. 51169005)
文摘Alternating rainfall and evaporation in nature severely impact the shear strength of expansive soils. This study presents an instrument for simulating the effect of wetting–drying cycles on the strength of expansive soils under different loads, and its testing error is verified. With this instrument,direct shear tests were performed on samples experiencing 0-6 cycles under vertical loads of 0 kPa,5 kPa, 15 kPa, and 30 k Pa. The results found that this instrument provides a new method for evaluating the effects of wetting–drying cycles on soils, and this method represents actual engineering conditions more accurately than do preexisting methods. It accurately controls the water content within 1% while simulating the specified loads at different soil depths.Cohesion is significantly affected by wetting–drying cycles, while the friction angle is not as sensitive to these cycles. Decrease in shear strength can be attributed to the fissures in soils caused by wetting–drying cycles. The existence of vertical loads effectively restricts shrinkage fissuring and cohesion attenuation, consequently inhibiting the attenuation of shear strength.
基金supported by the National Natural Science Foundation of China (NO.41072192)Academician Foundation of Chongqing Science & Technology Commission (CSTC,2010BC7004CSTC,2013JCYIYS20001)
文摘Cave air CO_2 is a vital part of the cave environment. Most studies about cave air CO_2 variations are performed in caves with no streams; there are few studies to date regarding the relationship of cave air CO_2 variations and drip water hydrochemistry in underground stream–developed caves. To study the relationship of underground stream, drip water, and cave air CO_2, monthly and daily monitoring of air CO_2 and of underground stream and drip water was performed in Xueyu Cave from 2012 to 2013.The results revealed that there was marked seasonal variation of air CO_2 and stream hydrochemistry in the cave. Daily variations of cave air CO_2, and of stream and drip water hydrochemistry, were notable during continuous monitoring.A dilution effect was observed by analyzing hydrochemical variations in underground stream and drip water after rainfall. High cave air CO_2 along with low p H and low δ^(13)C DIC in stream and drip water indicated that air CO_2 was one of the dominant factors controlling stream and drip water hydrochemistry on a daily scale. On a seasonal scale, stream flows may promote increased cave air CO_2 in summer; in turn, the higher cave air CO_2 could inhibit degassing of drip water and make calcite δ^(13)C more negative. Variation of calcite δ^(13)C(precipitated from drip water) was in reverse of monthly temperature, soil CO_2, and cave air CO_2. Therefore,calcite δ^(13)C in Xueyu Cave could be used to determine monthly changes outside the cave. However, considering the different precipitation rate of sediment in different seasons,it was difficult to use stalagmites to reconstruct environmental change on a seasonal scale.
文摘Soils developed from the Quaternary loesslike loams have been studied in the south of the forest-steppe zone on the Central Russian Upland. A polygenetic nature of the soil profile on the loesslike loams is shown. The modem pedogenetic processes in this soil ensure its eluvial-illuvial differentiation with the development of multilayered coatings in the illuvial horizon. The middle horizons in the studied soil profiles are referred to as textural (clay-illuvial) horizons. Differences in physical soil properties (bulk density, airconductivity, texture, water content, and temperature dynamics) were studied in the soil on the loesslike loam.
基金funded by National Natural Science Foundation of China(41373078)National Major Scientific Research Program(2013CB956702)Key Project of Natural Science Research in Colleges and Universities in Jiangsu Province(Grant No.16KJA180003)
文摘Heavy metal pollution in karst mountainous area of Guizhou has spread due to the long-term exploitation of mineral resources and the improper disposal of environmentally hazardous waste. Heavy metals are characterised by non-degradation, strong toxicity, and constant accumulation, posing a grave threat to karst mountain fragile soil ecosystem. To reduce the harm caused by heavy metal pollution and damage to agricultural products, research was undertaken on the basis of previous work by simulating pot experiments on pak choi cabbage(Brassica rapa chinensis)planted in Cd-contaminated soil: different amounts of organic mineral fertilisers(OMF) compared with chemical fertiliser(CF) were used and by detecting the amount of heavy metal in the mature vegetable, a better fertilisation strategy was developed. The results showed that the Cd content in vegetables grown with CF was 23.70 mg/kg,while that of vegetables grown with OMF and bacterial inoculant was the lowest at 15.13 mg/kg. This suggests that the use of OMF and microbes in karst areas not only promotes plant growth but also hinders plant absorption of heavy metal ions in the soil. In addition, through the collection of pot leachate, the detection of water chemistrycharacteristics, and the calculation of the calcite saturation index, it was found that the OMF method also induces certain carbon sink effects. The results provide a new way in which rationalise the use of OMFs in karst areas to alleviate soil heavy metal pollution and increase soil carbon sequestration.
基金Financial support from the Beijing Natural Science Foundation (No. KZ200810016007)the National 973 Key Program (No. 2010CB732003)the National Science Foundation of China(NSFC) (No. 50825403) is gratefully acknowledged
文摘Seismic safety of underground structures is one of the main concerns in underground space exploitation. As the first step for dynamic seismic response analysis, the free vibration of long large cross-section underground structures is studied in the present paper. The general free transverse vibration motion equation of long large cross-section underground structure is derived with the comprehensive consideration of internal and external damping, effects of shear, cross-sectional rotational inertia and axial force, and a twoparameter soil model. In this way, Timoshenko's beam theory is extended. Two limit cases of free transverse vibration of underground structures are discussed. Parameter study shows that in general wave propagation velocities in structures increase with soil elastic parameters. However the influence of Winkler's parameter k is significant while the effect of the second soil elastic parameter gp is insignificant. The free vibration frequency of underground structures increases with relative wave number and soil elastic parameters. Unlike the influence of soil elastic parameters on wave propagation velocities, the influence of soil elastic parameters k and gp on the vibration frequency of underground structures have the same order; therefore the influence of the second soil parameter gp on the free vibration of underground structures should not be neglected in dynamic seismic analysis of underground structures
基金supported by the National Natural Science Foundation of China(Grant No.91225302)
文摘Modeling the hydrological processes at catchment scale requires a flexible distributed scheme to represent the catchment to- pography, river network and vegetation pattern. This study has developed a distributed scheme for eco-hydrological simulation in the upper Heihe River. Based on a 1 km x 1 km grid system, the study catchment is divided into 461 sub-catchments, whose main streams form the streamflow pathway. Furthermore, a 1 km grid is represented by a number of topographically similar "hillslope-valley" systems, and the hillslope is the basic unit of the eco-hydrological simulation. This model is tested with a simplified hydrological simulation focusing on soil-water dynamics and streamflow routing. Based on a 12-year simulation from 2001 to 2012, it is found that variability in hydrological behavior is closely associated with climatic and landscape condi- tions especially vegetation types. The subsurface and groundwater flows dominate the total river runoff. This implies that the soil freezing and thawing process would significantly influence the runoff generation in the upper Heihe basin. Furthermore, the runoff components and water balance characteristics vary among different vegetation types, showing the importance of coupling the vegetation pattern into catchment hydrological simulation. This paper also discusses the model improvement to be done in future study.
基金Supported by the Isfahan University of Technology, Iranthe Technical University of Cartagena, Spain
文摘Limited information is available on the distribution and origin of palygorkite in soils developed on Tertiary sediments as the major soil parent materials in central Iran and other Middle Eastern countries. The objectives of this study were to determine the distribution and origin of palygorskite in soils developed on Tertiary sediments, and to identify the major soil properties that influence palygorskite distribution in the soils studied. Sixteen soil profiles developed on Paleocene, Eocene, Oligocene, Oligocene-Miocene, Miocene and Pliocene sediments were studied by X-ray diffraction analysis, transmission electron microscope, and scanning electron microscopy. Physicochemical characteristics of the soils and sediments including particle size distribution, pH, electrical conductivity, organic carbon, gypsum, carbonates, and soluble Si, Ca and Mg were determined. The principal component analysis was used to establish the relationships between palygorskite and the physicochemical characteristics of the soils studied. Results showed that clay fraction of all the soils in the study area was dominated by palygorskite. The highest amount of palygorskite was found in horizons where simultaneous accumulation of both carbonates and gypsum occurred. Limited amount of palygorskite was found in salic and calcic horizons. Palygorskite seemed to be of eolian origin in the surface horizon of all the soils. Using principal component analysis, the soluble Mg/Ca ratio, pH, soluble Si and gypsum contents were identified as the most important factors affecting the distribution and genesis of palygorskite in the soils studied. Results might suggest the neoformation of palygorskite by precipitation from solutions in which evaporation fluxes were very high. However, palygorskite in soils developed on Tertiary sediments in central Iran seems to be of both inherited and pedogenic origins.