In order to evaluate the effect of subsoiling on the soil physical properties and wheat yield in dry land conditions, this research was conducted in Mamassani area of Fars province in Iran. The experiment was laid dow...In order to evaluate the effect of subsoiling on the soil physical properties and wheat yield in dry land conditions, this research was conducted in Mamassani area of Fars province in Iran. The experiment was laid down in the form of a complete block experimental design with four treatments and four replications for three years. Treatments included: (1) conventional tillage without using subsoiler which was control treatment (So); (2) using subsoiler with the shank space of 40 cm which was equal to the subsoiling depth (SO; (3) using subsoiler with the shank space of 60 cm which was 1.5 times of the subsoiling depth (S2); and (4) using subsoiler with the shank space of 80 cm which was 2 times of the subsoiling depth (S3). Subsoiling depth was set at 40 cm which was the lower limit of the hard pan depth in the soil. Soil cone index, soil bulk density, soil moisture content, wheat yield, and yield components were measured in this study and SAS software was used to analyze the collected data. Results showed that subsoiling decreased the soil bulk density and cone index, and increased water retention of the soil. Results also revealed that applying subsoiler increased wheat yield and yield components in our dry land conditions. Since subsoiling improved soil physical conditions and increases wheat yield, applying subsoiler in such a dry land conditions is therefore recommended. Results of this study also showed that subsoiling with the shank space of 40 cm and 60 cm had better performance compared to the shank space of 80 cm. On the other hand, shank space of 40 cm reduced the subsoiler effective working width and consequently effective field capacity. Therefore, subsoiler with a shank space of 60 cm is recommended for application in dry land soils of our type.展开更多
文摘In order to evaluate the effect of subsoiling on the soil physical properties and wheat yield in dry land conditions, this research was conducted in Mamassani area of Fars province in Iran. The experiment was laid down in the form of a complete block experimental design with four treatments and four replications for three years. Treatments included: (1) conventional tillage without using subsoiler which was control treatment (So); (2) using subsoiler with the shank space of 40 cm which was equal to the subsoiling depth (SO; (3) using subsoiler with the shank space of 60 cm which was 1.5 times of the subsoiling depth (S2); and (4) using subsoiler with the shank space of 80 cm which was 2 times of the subsoiling depth (S3). Subsoiling depth was set at 40 cm which was the lower limit of the hard pan depth in the soil. Soil cone index, soil bulk density, soil moisture content, wheat yield, and yield components were measured in this study and SAS software was used to analyze the collected data. Results showed that subsoiling decreased the soil bulk density and cone index, and increased water retention of the soil. Results also revealed that applying subsoiler increased wheat yield and yield components in our dry land conditions. Since subsoiling improved soil physical conditions and increases wheat yield, applying subsoiler in such a dry land conditions is therefore recommended. Results of this study also showed that subsoiling with the shank space of 40 cm and 60 cm had better performance compared to the shank space of 80 cm. On the other hand, shank space of 40 cm reduced the subsoiler effective working width and consequently effective field capacity. Therefore, subsoiler with a shank space of 60 cm is recommended for application in dry land soils of our type.