期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
不同活化处理腐植酸–尿素对褐土小麦–玉米产量及有机碳氮矿化的影响 被引量:26
1
作者 刘艳丽 丁方军 +3 位作者 谷端银 吴钦泉 张民 李成亮 《土壤》 CAS CSCD 北大核心 2015年第1期42-48,共7页
腐植酸–尿素是一种新型有机无机肥料,不同活化方式对其肥效的发挥具有重要作用。本研究利用田间定位试验和室内培养试验,设计不施肥处理(CK)、无机肥处理(U)、腐植酸–尿素直接掺混处理(U+HA1)、腐植酸–尿素硫化活化处理(U+HA2)、腐... 腐植酸–尿素是一种新型有机无机肥料,不同活化方式对其肥效的发挥具有重要作用。本研究利用田间定位试验和室内培养试验,设计不施肥处理(CK)、无机肥处理(U)、腐植酸–尿素直接掺混处理(U+HA1)、腐植酸–尿素硫化活化处理(U+HA2)、腐植酸–尿素硫化加超声波处理(U+HA3),在褐土上研究不同活化处理腐植酸–尿素肥料对小麦–玉米产量和土壤有机碳氮矿化的影响。结果表明:施用腐植酸–尿素显著提高小麦–玉米产量,小麦、玉米产量分别比U处理增产15%~28%、8%~10%,比CK处理增产63%~81%、55%~57%。U+HA3处理比U+HA1和U+HA2处理具有更强的增产效果。土壤养分在不同施肥处理间存在差异,土壤NO3–-N含量的变化趋势为U+HA1、U+HA3>U+HA2>U>CK。土壤NH4+-N含量在不同处理间与NO3–-N含量具有相似的趋势,其中U+HA1处理土壤NH4+-N含量较其他两种腐植酸–尿素处理有显著的降低。施肥处理提高了土壤有效磷、速效钾含量,但是腐殖酸–尿素处理与U处理的影响未见差异。腐殖酸-尿素处理对土壤有机碳含量未产生显著影响,但提高了土壤有机碳的矿化速率与累积矿化量,其中U+HA3处理比U+HA1和U+HA2处理效果明显。土壤有机碳的累积矿化量与作物总产量、土壤速效氮、有效磷、速效钾含量具有显著的正相关关系。与CK处理相比,腐植酸的添加对土壤有机氮矿化比率影响不显著,但U处理土壤有机氮矿化比率显著提高。通过本研究验证腐植酸-尿素肥料比无机肥料具有更强的提高土壤生产力和肥力的作用,硫化超声波活化处理效果比其他两种活化处理效果显著。硫化超声波活化处理腐植酸-尿素肥料是值得推广的新型肥料,对丰富肥料资源具有重要作用。 展开更多
关键词 腐植酸–尿素 土壤有机碳氮矿化 土壤养分 施肥处理
下载PDF
Effects of Nitrogen Treatments on Organic Carbon Mineralization of Citrus Orchard Soil 被引量:2
2
作者 翁伯琦 王峰 +4 位作者 王义祥 江福英 吴志丹 尤志明 张文锦 《Agricultural Science & Technology》 CAS 2012年第8期1702-1707,共6页
[Objective] This study aimed to investigate the effect of soil organic carbon mineralization at different temperature on the amount of nitrogen application, in order to provide references for the establishment of carb... [Objective] This study aimed to investigate the effect of soil organic carbon mineralization at different temperature on the amount of nitrogen application, in order to provide references for the establishment of carbon circulation model for orchard eco-system. [Method] The effects of nitrogen treatments on soil organic carbon mineralization of citrus orchard soil were investigated under 10, 20, 30 ℃ by laboratory simulated experiment. [Result] The mineralization rate decreased quickly at the be- ginning of the experiment but remained stable at the late period under three temper- ature treatments. The amounts of CO2 ranged from 1 328.25-2 219.42 mg/kg under three temperature condition, and the amount of soil organic carbon mineralization of 100 mg/kg (N4) treatment was the greatest, while that of CK was the lowest. High level nitrogen treatment (N4 and N3) were significant higher than the lower level nitro- gen treatment (N2 and N1). The soil organic carbon mineralization rate increased with the temperature from 10 to 30℃. The dependence of soil carbon mineralization to temperature (Q10) was different under different nitrogen treatments that the Qlo value of N2 treatment was the lowest while that of the N4 treatment was the greatest. The soil organic carbon mineralization in Citrus orange orchard soil was affected significantly by high level nitrogen treatment, but with no significance under lower nitrogen treatment. [Conclusion] The dependence of soil carbon mineralization to temperature (Q10) increased with the increasing nitrogen input. The combination of nitrogen with temperature may increase the CO2 emission from Citrus orchard soil. 展开更多
关键词 Citrus orchard Soil organic carbon mineralization Nitrogen treatment TEMPERATURE
下载PDF
Effect of Simulated Acid Rain on Potential Carbon and Nitrogen Mineralization in Forest Soils 被引量:41
3
作者 OUYANG Xue-Jun ZHOU Guo-Yi +3 位作者 HUANG Zhong-Liang LIU Ju-Xiu ZHANG De-Qiang LI Jiong 《Pedosphere》 SCIE CAS CSCD 2008年第4期503-514,共12页
Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, ... Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control of pH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments. For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg-1 dry soil, net production of available N from 17.37 to 48.95 mg kg-1 dry soil, and net production of NO-3 -N from 9.09 to 46.23 mg kg-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission. SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P ≤ 0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests. 展开更多
关键词 forest soils MINERALIZATION organic C organic N simulated acid rain
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部