Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research ar...Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research area and abandoned farmland as a control, the distribution characteristics of soil organic carbon and total nitrogen content in the cotton field of Manas River Val ey in the last 23 years were investigated by using geographic methods. [Result] Presenting vertical distribution, cotton soil organic carbon and total nitrogen content in Manas River Val ey de-creased with the increase of soil depth, and those in 0-30 cm soil layer was sig-nificantly higher than those in soil layer of below 30 cm, while organic carbon stor-age showed the trend of increase. Also in vertical distribution, soil organic carbon and total nitrogen decreased significantly with the increase of soil depth, and soil organic carbon content in abandoned farmland decreased month by month. Howev-er, cotton soil organic carbon storage firstly decreased and then increased in the oasis cotton field that in the early growth of cotton, soil organic carbon in the layers of 0-30 and 30-100 cm decreased to the lowest in the bloom stage, and then or-ganic carbon increased with the reproductive growth of cotton into the later stages. However, due to no input of plant litter in the abandoned farmland, the soil organic carbon storage decreased month by month. There were significantly differences be-tween oasis cotton field and abandoned farmland in organic carbon contents. [Con-clusion] The soil organic carbon content and total nitrogen content in oasis cotton field were significantly higher than those in the abandoned farmland. The soil organ-ic carbon storage increased in the layer of 0-30 cm, while there was no significant change of soil organic carbon and total nitrogen content in the layer of 30-100 cm, which was consistent with the previous study on the distribution characteristics of soil organic carbon and total nitrogen content profile.展开更多
Coastal wetlands play an important role in the global carbon cycle. Large quantities of sediment deposited in the Changjiang (Yangtze) estuary by the Changjiang River promote the propagation of coastal wetlands, the...Coastal wetlands play an important role in the global carbon cycle. Large quantities of sediment deposited in the Changjiang (Yangtze) estuary by the Changjiang River promote the propagation of coastal wetlands, the expansion of saltmarsh vegetation, and carbon sequestration. In this study, using the Chongming Dongtan Wetland in the Changjiang estuary as the study area, the spatial and temporal distribution of soil organic carbon (SOC) stocks and the influences of sedimentation and vegetation on the SOC stocks of the coastal wetland were examined in 2013. There was sediment accretion in the northern and middle areas of the wetland and in the Phragmites australis marsh in the southern area, and sediment erosion in the Scirpus mariqueter marsh and the bare mudflat in the southem area. More SOC accumulated in sediments of the vegetated marsh than in the bare mudflat. The total organic carbon (TOC) stocks increased in the above-ground biomass from spring to autumn and decreased in winter; in the below-ground biomass, they gradually increased from spring to winter. The TOC stocks were higher in the below-ground biomass than in the above-ground biomass in the P. australis and Spartina alterniflora marshes, but were lower in the below-ground biomass in S. mariqueter marsh. Stocks of SOC showed temporal variation and increased gradually in all transects from spring to winter. The SOC stocks tended to decrease from the high marsh down to the bare mudflat along the three transects in the order: P. australis marsh 〉 S. alterniflora marsh 〉 S. mariqueter marsh 〉 bare mudflat. The SOC stocks of the same vegetation type were higher in the northern and middle transects than in the southern transect. These results suggest that interactions between sedimentation and vegetation regulate the SOC stocks in the coastal wetland in the Changjiang estuary.展开更多
In this article, we mainly analysis the soil carbon storage of the alpine grassland under different land uses in Qinghai-Tibet Plateau. The samples of this investigation include six experimental fields which are fence...In this article, we mainly analysis the soil carbon storage of the alpine grassland under different land uses in Qinghai-Tibet Plateau. The samples of this investigation include six experimental fields which are fenced mowing grassland, artificial grassland, winter and spring grazing meadowland, summer and autumn mild grazing land, summer and autumn moderate grazing pasture and summer and autumn severe grazing land and seven soil layers included 0 cm-5 cm, 5 cm-10 cm, 10 cm-20 cm, 20 cm-30 cm, 30 cm-50 cm, 50 cm-70 cm and 70 cm-100 cm. The results show that the soil carbon storage in different soil layers will gradually reduce and the difference was remarkable (P 〈 0.05). What is more, the soil carbon storage of alpine grassland under different land uses has following sequence: winter and spring grazing grassland 〉 summer and autumn mild grazing land 〉 artificial grassland 〉 summer and autumn moderate grazing meadowland 〉 summer and autumn severe grazing pasture 〉 fenced mowing meadow, and the significant difference between them is remarkable (P 〈 0.05).展开更多
Grassland is a major carbon sink in the terrestrial ecosystem. The dynamics of grassland carbon stock profoundly influence the global carbon cycle. In the published literatures so far, however, there are limited studi...Grassland is a major carbon sink in the terrestrial ecosystem. The dynamics of grassland carbon stock profoundly influence the global carbon cycle. In the published literatures so far, however, there are limited studies on the long-term dynamics and influential factors of grassland carbon stock, including soil organic carbon. In this study, spatial-temporal substitution method was applied to explore the characteristics of Medicago sativa L. (alfalfa) grassland biomass carbon and soil organic carbon density (SOCD) in a loess hilly region with different growing years and management patterns. The results demonstrated that alfalfa was the mono-dominant community during the cutting period (viz. 0-10 year). Community succession began after the abandonment of alfalfa grassland and then the important value of alfalfa in the community declined. The artificial alfalfa community abandoned for 30 years was replaced by the S. bungeana community. Accordingly, the biomass carbon density of the clipped alfalfa showed a significant increase over the time during 0-10 year. During 0-30 year, the SOCD from 0-100 cm of the soil layer of all 5 management patterns increased over time with a range between 5.300 ± 0.981 kg/m2 and 12.578 ± 0.863 kg/m2. The sloping croplands had the lowest SOCD at 5.300 ± 0.981 kg/m2 which was quite different from the abandoned grasslands growing for 30 years which exhibited the highest SOCD with 12.578 ± 0.863 kg/m2. The ecosystem carbon density of the grassland clipped for 2 years increased 0.1 kg/m2 compared with the sloping cropland, while that of the grassland clipped for 10 years substantially increased to 10.30 ± 1.26 kg/m2. Moreover, the ecosystem carbon density for abandoned grassland became 12.62± 0.50 kg/m2 at 30 years. The carbon density of the grassland undisturbed for l0 years was similar to that of the sloping cropland and the grassland clipped for 2 years. Different management patterns imposed great different effects on the accumulation of biomass carbon on artificial grasslands, whereas the ecosystem carbon density of the grassland showed a slight increase from the clipping to abandonment of grassland in general.展开更多
Soil organic carbon is of great importance to terrestrial ecosystems. Studies on the amount and spatial distribution of soil organic carbon stock in various types of soil can help to better understand the role of soil...Soil organic carbon is of great importance to terrestrial ecosystems. Studies on the amount and spatial distribution of soil organic carbon stock in various types of soil can help to better understand the role of soil in the global carbon cycle and provide a scientific basis for the assessment of the magnitude of carbon stored in a given area. Here we present estimates of soil organic carbon stock in soils in the upper reaches of the Yangtze River based on soil types as defined by Chinese Soil Taxonomy and recently compiled into a digital soil database. The results showed that the total soil organic carbon stock of the upper Yangtze River to a depth of 100 cm was 1.452x1013 kg. The highest soil organic carbon stock was found in felty soils (2.419x10TM kg), followed by dark brown soils (1.269x10=kg), and dark feltysoils (L139x10=kg). Chernozems and irrigation silting soils showed the lowest soil organic carbon stock, mainly due to the small total area of such soils. The soil organic carbon density of these major soil types ranged from 5.6 to 26.1 kg m2- The average soil organic carbon density of the upper reaches of the Yangtze River was 16.4 kg m-2, which was higher than that of the national average. Soil organic carbon density indicated a distinct decreasing trend from west to east, which corresponds to the pattern of increasing temperature from cold to subtropical.展开更多
Understanding the spatial variability of soil carbon (C) storage and its relationship with climate and soil texture is critical for developing regional C models and for predicting the potential impact of climate cha...Understanding the spatial variability of soil carbon (C) storage and its relationship with climate and soil texture is critical for developing regional C models and for predicting the potential impact of climate change on soil C storage. On the basis of soil data from a transect across the Inner Mongolian grasslands, we determined the quantitative relationships of C and nitrogen (N) in bulk soil and particle-size fractions (sand, silt, and clay) with climate and soil texture to evaluate the major factors controlling soil C and N storage and to predict the effect of climate changes on soil C and N storage. The contents of C and N in the bulk soil and the different fractions in the 0 20 and 20 40 cm soil layers were positively correlated with the mean annum precipitation (MAP) and negatively correlated with the mean annual temperature (MAT). The responses of C storage in the soil and particle-size fractions to MAP and MAT were more sensitive in the 0-20 cm than in the 2(~40 cm soil layer. Although MAP and MAT were both important factors influencing soil C storage, the models that include only MAP could well explain the variation in soil C storage in the Inner Mongolian grasslands. Because of the high correlation between MAP and MAT in the region, the models including MAT did not significantly enhance the model precision. Moreover, the contribution of the fine fraction (silt and clay) to the variation in soil C storage was rather small because of the very low fine fraction content in the Inner Mongolian grasslands.展开更多
基金Supported by the National Natural Science Foundation of China(31360320)~~
文摘Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research area and abandoned farmland as a control, the distribution characteristics of soil organic carbon and total nitrogen content in the cotton field of Manas River Val ey in the last 23 years were investigated by using geographic methods. [Result] Presenting vertical distribution, cotton soil organic carbon and total nitrogen content in Manas River Val ey de-creased with the increase of soil depth, and those in 0-30 cm soil layer was sig-nificantly higher than those in soil layer of below 30 cm, while organic carbon stor-age showed the trend of increase. Also in vertical distribution, soil organic carbon and total nitrogen decreased significantly with the increase of soil depth, and soil organic carbon content in abandoned farmland decreased month by month. Howev-er, cotton soil organic carbon storage firstly decreased and then increased in the oasis cotton field that in the early growth of cotton, soil organic carbon in the layers of 0-30 and 30-100 cm decreased to the lowest in the bloom stage, and then or-ganic carbon increased with the reproductive growth of cotton into the later stages. However, due to no input of plant litter in the abandoned farmland, the soil organic carbon storage decreased month by month. There were significantly differences be-tween oasis cotton field and abandoned farmland in organic carbon contents. [Con-clusion] The soil organic carbon content and total nitrogen content in oasis cotton field were significantly higher than those in the abandoned farmland. The soil organ-ic carbon storage increased in the layer of 0-30 cm, while there was no significant change of soil organic carbon and total nitrogen content in the layer of 30-100 cm, which was consistent with the previous study on the distribution characteristics of soil organic carbon and total nitrogen content profile.
基金Supported by the Marine Science Project of Shanghai Committee of Science and Technology,China(No.14DZ1206004)the National Natural Science Foundation of China(No.41571083)the autonomous research fund of the State Key Laboratory of Estuarine and Coastal Research,China(No.2015KYYW03)
文摘Coastal wetlands play an important role in the global carbon cycle. Large quantities of sediment deposited in the Changjiang (Yangtze) estuary by the Changjiang River promote the propagation of coastal wetlands, the expansion of saltmarsh vegetation, and carbon sequestration. In this study, using the Chongming Dongtan Wetland in the Changjiang estuary as the study area, the spatial and temporal distribution of soil organic carbon (SOC) stocks and the influences of sedimentation and vegetation on the SOC stocks of the coastal wetland were examined in 2013. There was sediment accretion in the northern and middle areas of the wetland and in the Phragmites australis marsh in the southern area, and sediment erosion in the Scirpus mariqueter marsh and the bare mudflat in the southem area. More SOC accumulated in sediments of the vegetated marsh than in the bare mudflat. The total organic carbon (TOC) stocks increased in the above-ground biomass from spring to autumn and decreased in winter; in the below-ground biomass, they gradually increased from spring to winter. The TOC stocks were higher in the below-ground biomass than in the above-ground biomass in the P. australis and Spartina alterniflora marshes, but were lower in the below-ground biomass in S. mariqueter marsh. Stocks of SOC showed temporal variation and increased gradually in all transects from spring to winter. The SOC stocks tended to decrease from the high marsh down to the bare mudflat along the three transects in the order: P. australis marsh 〉 S. alterniflora marsh 〉 S. mariqueter marsh 〉 bare mudflat. The SOC stocks of the same vegetation type were higher in the northern and middle transects than in the southern transect. These results suggest that interactions between sedimentation and vegetation regulate the SOC stocks in the coastal wetland in the Changjiang estuary.
文摘In this article, we mainly analysis the soil carbon storage of the alpine grassland under different land uses in Qinghai-Tibet Plateau. The samples of this investigation include six experimental fields which are fenced mowing grassland, artificial grassland, winter and spring grazing meadowland, summer and autumn mild grazing land, summer and autumn moderate grazing pasture and summer and autumn severe grazing land and seven soil layers included 0 cm-5 cm, 5 cm-10 cm, 10 cm-20 cm, 20 cm-30 cm, 30 cm-50 cm, 50 cm-70 cm and 70 cm-100 cm. The results show that the soil carbon storage in different soil layers will gradually reduce and the difference was remarkable (P 〈 0.05). What is more, the soil carbon storage of alpine grassland under different land uses has following sequence: winter and spring grazing grassland 〉 summer and autumn mild grazing land 〉 artificial grassland 〉 summer and autumn moderate grazing meadowland 〉 summer and autumn severe grazing pasture 〉 fenced mowing meadow, and the significant difference between them is remarkable (P 〈 0.05).
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05000000)National Natural Science Foundation of China(No.41271518)Sci-technology Project of Shaanxi Province(No.2013kw19-01)
文摘Grassland is a major carbon sink in the terrestrial ecosystem. The dynamics of grassland carbon stock profoundly influence the global carbon cycle. In the published literatures so far, however, there are limited studies on the long-term dynamics and influential factors of grassland carbon stock, including soil organic carbon. In this study, spatial-temporal substitution method was applied to explore the characteristics of Medicago sativa L. (alfalfa) grassland biomass carbon and soil organic carbon density (SOCD) in a loess hilly region with different growing years and management patterns. The results demonstrated that alfalfa was the mono-dominant community during the cutting period (viz. 0-10 year). Community succession began after the abandonment of alfalfa grassland and then the important value of alfalfa in the community declined. The artificial alfalfa community abandoned for 30 years was replaced by the S. bungeana community. Accordingly, the biomass carbon density of the clipped alfalfa showed a significant increase over the time during 0-10 year. During 0-30 year, the SOCD from 0-100 cm of the soil layer of all 5 management patterns increased over time with a range between 5.300 ± 0.981 kg/m2 and 12.578 ± 0.863 kg/m2. The sloping croplands had the lowest SOCD at 5.300 ± 0.981 kg/m2 which was quite different from the abandoned grasslands growing for 30 years which exhibited the highest SOCD with 12.578 ± 0.863 kg/m2. The ecosystem carbon density of the grassland clipped for 2 years increased 0.1 kg/m2 compared with the sloping cropland, while that of the grassland clipped for 10 years substantially increased to 10.30 ± 1.26 kg/m2. Moreover, the ecosystem carbon density for abandoned grassland became 12.62± 0.50 kg/m2 at 30 years. The carbon density of the grassland undisturbed for l0 years was similar to that of the sloping cropland and the grassland clipped for 2 years. Different management patterns imposed great different effects on the accumulation of biomass carbon on artificial grasslands, whereas the ecosystem carbon density of the grassland showed a slight increase from the clipping to abandonment of grassland in general.
基金funded by Special Program of Strategic Science and Technology of Chinese Academy of Sciences (Grant No. XDA05050506)State Key and Basic Research Development Planning (Grant No. 2012CB417101)+1 种基金Project of Natural Science Foundation of China (Grant No. 40901134)West Light Foundation of Chinese Academy of Sciences
文摘Soil organic carbon is of great importance to terrestrial ecosystems. Studies on the amount and spatial distribution of soil organic carbon stock in various types of soil can help to better understand the role of soil in the global carbon cycle and provide a scientific basis for the assessment of the magnitude of carbon stored in a given area. Here we present estimates of soil organic carbon stock in soils in the upper reaches of the Yangtze River based on soil types as defined by Chinese Soil Taxonomy and recently compiled into a digital soil database. The results showed that the total soil organic carbon stock of the upper Yangtze River to a depth of 100 cm was 1.452x1013 kg. The highest soil organic carbon stock was found in felty soils (2.419x10TM kg), followed by dark brown soils (1.269x10=kg), and dark feltysoils (L139x10=kg). Chernozems and irrigation silting soils showed the lowest soil organic carbon stock, mainly due to the small total area of such soils. The soil organic carbon density of these major soil types ranged from 5.6 to 26.1 kg m2- The average soil organic carbon density of the upper reaches of the Yangtze River was 16.4 kg m-2, which was higher than that of the national average. Soil organic carbon density indicated a distinct decreasing trend from west to east, which corresponds to the pattern of increasing temperature from cold to subtropical.
基金Supported by the National Natural Science Foundation of China(Nos.31270519,31070431 and 41373080)the State Key Laboratory of Forest and Soil Ecology,China(No.LFSE2013-03)
文摘Understanding the spatial variability of soil carbon (C) storage and its relationship with climate and soil texture is critical for developing regional C models and for predicting the potential impact of climate change on soil C storage. On the basis of soil data from a transect across the Inner Mongolian grasslands, we determined the quantitative relationships of C and nitrogen (N) in bulk soil and particle-size fractions (sand, silt, and clay) with climate and soil texture to evaluate the major factors controlling soil C and N storage and to predict the effect of climate changes on soil C and N storage. The contents of C and N in the bulk soil and the different fractions in the 0 20 and 20 40 cm soil layers were positively correlated with the mean annum precipitation (MAP) and negatively correlated with the mean annual temperature (MAT). The responses of C storage in the soil and particle-size fractions to MAP and MAT were more sensitive in the 0-20 cm than in the 2(~40 cm soil layer. Although MAP and MAT were both important factors influencing soil C storage, the models that include only MAP could well explain the variation in soil C storage in the Inner Mongolian grasslands. Because of the high correlation between MAP and MAT in the region, the models including MAT did not significantly enhance the model precision. Moreover, the contribution of the fine fraction (silt and clay) to the variation in soil C storage was rather small because of the very low fine fraction content in the Inner Mongolian grasslands.