The most promising approach for studying soil moisture is the assimilation of observation data and computational modeling. However, there is much uncertainty in the assimilation process, which affects the assimilation...The most promising approach for studying soil moisture is the assimilation of observation data and computational modeling. However, there is much uncertainty in the assimilation process, which affects the assimilation results. This research developed a one-dimensional soil moisture assimilation scheme based on the Ensemble Kalman Filter (EnKF) and Genetic Algorithm (GA). A two-dimensional hydrologic model-Distributed Hydrology-Soil-Vegetation Model (DHSVM) was coupled with a semi-empirical backscattering model (Oh). The Advanced Synthetic Aperture Radar (ASAR) data were assimilated with this coupled model and the field observation data were used to validate this scheme in the soil moisture assimilation experiment. In order to improve the assimilation results, a cost function was set up based on the distance between the simulated backscattering coefficient from the coupled model and the observed backscattering coefficient from ASAR. The EnKF and GA were used to re-initialize and re-parameterize the simulation process, respectively. The assimilation results were compared with the free-run simulations from hydrologic model and the field observation data. The results obtained indicate that this assimilation scheme is practical and it can improve the accuracy of soil moisture estimation significantly.展开更多
Soil moisture plays an important role in land-atmosphere interactions. It is an important geophysical parameter in research on climate, hydrology, agriculture, and forestry. Soil moisture has important climatic effect...Soil moisture plays an important role in land-atmosphere interactions. It is an important geophysical parameter in research on climate, hydrology, agriculture, and forestry. Soil moisture has important climatic effects by influencing ground evapotranspi ration, runoff, surface reflectivity, surface emissivity, surface sensible heat and latent heat flux. At the global scale, the extent of its influence on the atmosphere is second only to that of sea surface temperature. At the terrestrial scale, its influence is even greater than that of sea surface temperatures. This paper presents a China Land Soil Moisture Data Assimilation System (CLSMDAS) based on EnKF and land process models, and results of the application of this system in the China Land Soil Moisture Data Assimilation tests. CLSMDAS is comprised of the following components: 1) A land process mo del—Community Land Model Version 3.0 (CLM3.0)—developed by the US National Center for Atmospheric Research (NCAR); 2) Precipitation of atmospheric forcing data and surface-incident solar radiation data come from hourly outputs of the FY2 geostationary meteorological satellite; 3) EnKF (Ensemble Kalman Filter) land data assimilation method; and 4) Observa tion data including satellite-inverted soil moisture outputs of the AMSR-E satellite and soil moisture observation data. Results of soil moisture assimilation tests from June to September 2006 were analyzed with CLSMDAS. Both simulation and assimila tion results of the land model reflected reasonably the temporal-spatial distribution of soil moisture. The assimilated soil mois ture distribution matches very well with severe summer droughts in Chongqing and Sichuan Province in August 2006, the worst since the foundation of the People’s Republic of China in 1949. It also matches drought regions that occurred in eastern Hubei and southern Guangxi in September.展开更多
The default fractional vegetation cover and terrain height were replaced by the estimated fractional vegetation cover, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing Sys...The default fractional vegetation cover and terrain height were replaced by the estimated fractional vegetation cover, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing System Moderate-Resolution Im- aging Spectroradiometer (EOS-MODIS) and the Digital Elevation Model of the Shuttle Radar Topography Mission (SRTM) system. The near-surface meteorological elements over northeastern China were assimilated into the three-dimensional varia- tional data assimilation system (3DVar) module in the Weather Research and Forecasting (WRF) model. The structure and daily variations of air temperature, humidity, wind and energy fields over northeastern China were simulated using the WRF model. Four groups of numerical experiments were performed, and the simulation results were analyzed of latent heat flux, sensible heat flux, and their relationships with changes in the surface energy flux due to soil moisture and precipitation over different surfaces. The simulations were compared with observations of the stations Tongyu, Naiman, Jinzhou, and Miyun from June to August, 2009. The results showed that the WRF model achieves high-quality simulations of the diurnal charac- teristics of the surface layer temperature, wind direction, net radiation, sensible heat flux, and latent heat flux over semiarid northeastern China in the summer. The simulated near-surface temperature, relative humidity, and wind speed were improved in the data assimilation case (Case 2) compared with control case (Case 1). The simulated sensible heat fluxes and surface heat fluxes were improved by the land surface parameterization case (Case 3) and the combined case (Case 4). The simulated tem- poral variations in soil moisture over the northeastern arid areas agree well with observations in Case 4, but the simulated pre- cipitation should be improved in the WRF model. This study could improve the land surface parameters by utilizing remote sensing data and could further improve atmospheric elements with a data assimilation system. This work provides an effective attempt at combining multi-source data with different spatial and temporal scales into numerical simulations. The assimilation datasets generated by this work can be applied to research on climate change and environmental monitoring of add lands, as well as research on the formation and stability of climate over semiarid areas.展开更多
基金Under the auspices of Major State Basic Research Development Program of China (973 Program) (No. 2007CB714400)the Program of One Hundred Talents of the Chinese Academy of Sciences (No. 99T3005WA2)
文摘The most promising approach for studying soil moisture is the assimilation of observation data and computational modeling. However, there is much uncertainty in the assimilation process, which affects the assimilation results. This research developed a one-dimensional soil moisture assimilation scheme based on the Ensemble Kalman Filter (EnKF) and Genetic Algorithm (GA). A two-dimensional hydrologic model-Distributed Hydrology-Soil-Vegetation Model (DHSVM) was coupled with a semi-empirical backscattering model (Oh). The Advanced Synthetic Aperture Radar (ASAR) data were assimilated with this coupled model and the field observation data were used to validate this scheme in the soil moisture assimilation experiment. In order to improve the assimilation results, a cost function was set up based on the distance between the simulated backscattering coefficient from the coupled model and the observed backscattering coefficient from ASAR. The EnKF and GA were used to re-initialize and re-parameterize the simulation process, respectively. The assimilation results were compared with the free-run simulations from hydrologic model and the field observation data. The results obtained indicate that this assimilation scheme is practical and it can improve the accuracy of soil moisture estimation significantly.
基金supported by National High Technology Research and Development Program of China (Grant Nos. 2007AA12Z144, 2009AA12Z129)Chinese COPES Project (Grant Nos. GYHY200706005, GYHY200806014)China Meteorological Administration New Technology Promotion Project (Grant No. CMATG2008Z04)
文摘Soil moisture plays an important role in land-atmosphere interactions. It is an important geophysical parameter in research on climate, hydrology, agriculture, and forestry. Soil moisture has important climatic effects by influencing ground evapotranspi ration, runoff, surface reflectivity, surface emissivity, surface sensible heat and latent heat flux. At the global scale, the extent of its influence on the atmosphere is second only to that of sea surface temperature. At the terrestrial scale, its influence is even greater than that of sea surface temperatures. This paper presents a China Land Soil Moisture Data Assimilation System (CLSMDAS) based on EnKF and land process models, and results of the application of this system in the China Land Soil Moisture Data Assimilation tests. CLSMDAS is comprised of the following components: 1) A land process mo del—Community Land Model Version 3.0 (CLM3.0)—developed by the US National Center for Atmospheric Research (NCAR); 2) Precipitation of atmospheric forcing data and surface-incident solar radiation data come from hourly outputs of the FY2 geostationary meteorological satellite; 3) EnKF (Ensemble Kalman Filter) land data assimilation method; and 4) Observa tion data including satellite-inverted soil moisture outputs of the AMSR-E satellite and soil moisture observation data. Results of soil moisture assimilation tests from June to September 2006 were analyzed with CLSMDAS. Both simulation and assimila tion results of the land model reflected reasonably the temporal-spatial distribution of soil moisture. The assimilated soil mois ture distribution matches very well with severe summer droughts in Chongqing and Sichuan Province in August 2006, the worst since the foundation of the People’s Republic of China in 1949. It also matches drought regions that occurred in eastern Hubei and southern Guangxi in September.
基金supported by the National Basic Research Program of China(Grant No.2010CB950504)the National High-tech R&D Program of China(Grant No.2013AA122003)the open funds of the Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Chinese Academy of Sciences(Grant No.LPCC201101)
文摘The default fractional vegetation cover and terrain height were replaced by the estimated fractional vegetation cover, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing System Moderate-Resolution Im- aging Spectroradiometer (EOS-MODIS) and the Digital Elevation Model of the Shuttle Radar Topography Mission (SRTM) system. The near-surface meteorological elements over northeastern China were assimilated into the three-dimensional varia- tional data assimilation system (3DVar) module in the Weather Research and Forecasting (WRF) model. The structure and daily variations of air temperature, humidity, wind and energy fields over northeastern China were simulated using the WRF model. Four groups of numerical experiments were performed, and the simulation results were analyzed of latent heat flux, sensible heat flux, and their relationships with changes in the surface energy flux due to soil moisture and precipitation over different surfaces. The simulations were compared with observations of the stations Tongyu, Naiman, Jinzhou, and Miyun from June to August, 2009. The results showed that the WRF model achieves high-quality simulations of the diurnal charac- teristics of the surface layer temperature, wind direction, net radiation, sensible heat flux, and latent heat flux over semiarid northeastern China in the summer. The simulated near-surface temperature, relative humidity, and wind speed were improved in the data assimilation case (Case 2) compared with control case (Case 1). The simulated sensible heat fluxes and surface heat fluxes were improved by the land surface parameterization case (Case 3) and the combined case (Case 4). The simulated tem- poral variations in soil moisture over the northeastern arid areas agree well with observations in Case 4, but the simulated pre- cipitation should be improved in the WRF model. This study could improve the land surface parameters by utilizing remote sensing data and could further improve atmospheric elements with a data assimilation system. This work provides an effective attempt at combining multi-source data with different spatial and temporal scales into numerical simulations. The assimilation datasets generated by this work can be applied to research on climate change and environmental monitoring of add lands, as well as research on the formation and stability of climate over semiarid areas.