Removal of hydrophobic organic contaminants (HOCs) from soil of low permeability by electroremedia-tion was investigated by using phenanthrene and kaolinite as a model system. Tween 80 was added into the purging solut...Removal of hydrophobic organic contaminants (HOCs) from soil of low permeability by electroremedia-tion was investigated by using phenanthrene and kaolinite as a model system. Tween 80 was added into the purging solution in order to enhance the solubility of phenanthrene. The effects of pH on the adsorption of phenanthrene and Tween 80 on kaolinite and the magnitude of -potential of kaolinite were examined, respectively. The effects of electric field strength indicated by electric current on the electroremediation behavior, including the pH of purging solution, the conductivity, phenanthrene concentration and flow rate of effluent, were experimentally investigated, respectively. In case of an electric field of 25 mA applied for 72 hours, over 90% of phenanthrene was removed from 424 g (dry mass) of kaolinite at an energy consumption of 0.148 kW-h. The experimental results described in present study show that the addition of surfactant into purging solution greatly enhances the removal of HOCs by electroremediation.展开更多
基金Supported by the National Natural Science Foundation (No. 29976020) and Tsinghua University Foundation.
文摘Removal of hydrophobic organic contaminants (HOCs) from soil of low permeability by electroremedia-tion was investigated by using phenanthrene and kaolinite as a model system. Tween 80 was added into the purging solution in order to enhance the solubility of phenanthrene. The effects of pH on the adsorption of phenanthrene and Tween 80 on kaolinite and the magnitude of -potential of kaolinite were examined, respectively. The effects of electric field strength indicated by electric current on the electroremediation behavior, including the pH of purging solution, the conductivity, phenanthrene concentration and flow rate of effluent, were experimentally investigated, respectively. In case of an electric field of 25 mA applied for 72 hours, over 90% of phenanthrene was removed from 424 g (dry mass) of kaolinite at an energy consumption of 0.148 kW-h. The experimental results described in present study show that the addition of surfactant into purging solution greatly enhances the removal of HOCs by electroremediation.