To identify the main sources responsible for soil heavy metal contamination, 70 topsoils were sampled from the Daxing County in the urban-rural transition zone of Beijing. The concentrations of heavy metals Cu, Zn, Pb...To identify the main sources responsible for soil heavy metal contamination, 70 topsoils were sampled from the Daxing County in the urban-rural transition zone of Beijing. The concentrations of heavy metals Cu, Zn, Pb, Cr, Cd, Ni, As, Se, Hg, and Co; the soil texture; and the organic matter content were determined for each soil sample. Descriptive statistics and geostatistics were used to analyze the data, and Kriging analysis was used to estimate the unobserved points and to map the spatial patterns of soil heavy metals. The results showed that the concentrations of all the soil heavy metals exceeded their background levels with the exception of As and Se. However, only the Cd concentration in some areas exceeded the critical value of the national soil quality standard. The semivariance analysis showed that the spatial correlation distances for soil Cu, Zn, Cr, Cd, As, Ni, and Co ranged from 4.0 to 7.0 km, but soil Se, Pb, and Hg had a larger correlation distance. Soil Co, Se, Cd, Cu and Zn showed a strong spatial correlation, whereas the other soil heavy metals showed medium spatial correlation. Soil heavy metal concentrations were related to soil texture, organic matter content, and the accumulation of heavy metals in the soils, which was because of air deposition and use of water from the Liangshui, Xinfeng, and Fenghe rivers that are contaminated by wastewater and sewage for the purpose of irrigation of fields. Hence, a comprehensive treatment plan for these rivers should be formulated.展开更多
Soil contamination in the vicinity of the Dabaoshan Mine, Guangdong Province, China, was studied through determi- nation of total concentrations and chemical speciation of the toxic metals, Cu, Zn, Cd, and Pb, using i...Soil contamination in the vicinity of the Dabaoshan Mine, Guangdong Province, China, was studied through determi- nation of total concentrations and chemical speciation of the toxic metals, Cu, Zn, Cd, and Pb, using inductively coupled plasma mass spectrometry. The results showed that over the past decades, the environmental pollution was caused by a combination of Cu, Zn, Cd, and Pb, with tailings and acid mine drainage being the main pollution sources affecting soils. Significantly higher levels (P ≤ 0.05) of Cu, Zn, Cd, and Pb were found in the tailings as compared with paddy, garden, and control soils, with averages of 1486, 2516, 6.42, and 429 mg kg^-1, respectively. These metals were continuously dispersed downstream from the tallings and waste waters, and therefore their concentrations in the paddy soils were as high as 567, 1 140, 2.48, and 191 mg kg^-1, respectively, being significantly higher (P ≤ 0.05) as compared with those in the garden soils. The results of sequential extraction of the above metals from all the soil types showed that the residual fraction was the dominant form. However, the amounts of metals that were bound to Fe-Mn oxides and organic matter were relatively higher than those bound to carbonates or those that existed in exchangeable forms. As metals could be transformed from an inert state to an active state, the potential environmental risk due to these metals would increase with time.展开更多
A microscopic diffusion-reaction modei was developed to simulate in-situ ozonation for the remediation of contaminated soil, i.e., to predict the temporal and spatial distribution of target contaminant in the subsurfa...A microscopic diffusion-reaction modei was developed to simulate in-situ ozonation for the remediation of contaminated soil, i.e., to predict the temporal and spatial distribution of target contaminant in the subsurface. The sequential strategy was employed to obtain the numerical solution of the modei using finite difference method. A non-uniform grid of discretization points was emploved to increase the accuracy of the numerical solution by means of coordinate transformation. One-dimensional column tests were conducted to verify the modei. The column was packed with simulated soils that were spiked with 2-chlorophenol. Ozone gas passed through the column at a flow rate of 100ml·min-1. The residual 2-chlorophenol content at different depths of the column was determined at fixed time intervals. Compared the experimental data with the simulated values, it was found that the mathematical modei fitted data well during most time of the experiment.展开更多
Thermal treatment technologies hold an important niche in the remediation of hydrocarbon- contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high t...Thermal treatment technologies hold an important niche in the remediation of hydrocarbon- contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high temperature can be energy intensive and can damage soil properties. Despite the broad applicability and prevalence of thermal remediation, little work has been done to improve the environmental compatibility and sustainahility of these technologies. We review several common thermal treatment technologies for hydrocarbon-contaminated soils, assess their potential environmental impacts, and propose frameworks for sustainable and low-impact deployment based on a holistic consideration of energy and water requirements, ecosystem ecology, and soil science. There is no universally appropriate thermal treatment technology. Rather, the appropriate choice depends on the contamination scenario (including the type of hydrocarbons present) and on site-specific considerations such as soil properties, water availability, and the heat sensitivity of contaminated soils. Overall, the convergence of treatment process engineering with soil science, ecosystem ecology, and plant biology research is essential to fill critical knowledge gaps and improve both the removal efficiency and sustainability of thermal technologies.展开更多
Atmospheric emissions of fluoride from an aiuminium smelter-alumina refinery located on the northern coast of Galicia, NW Spain, increase the content of fluorine in soils and vegetation in the vicinity of the complex....Atmospheric emissions of fluoride from an aiuminium smelter-alumina refinery located on the northern coast of Galicia, NW Spain, increase the content of fluorine in soils and vegetation in the vicinity of the complex. The effects of the addition of fluoride solutions on the chemical properties of soil samples from the area surrounding the complex were investigated in laboratory experiments. Addition of fluoride to soils resulted in increases in pH and concentrations of Fe, A1, and organic matter in the equilibrium solutions and decreases in concentrations of Ca, Mg, and K. No consistent effects were observed on the Cu, Mn, or Zn concentrations. Most of the A1 in solution was bound to organic matter. Within the fraction "labile aluminium', the concentration of A1-OH complexes decreased and the A1-F complexes increased, especially A1F3 and A1F4^-, which are less toxic than Al^3+ and A1-OH species.展开更多
Hydrocarbon contamination may affect the soil microbial community, in terms of both diversity and function. A laboratory experiment was set-up, with a semi-arid control soil and the same soil but artificially contamin...Hydrocarbon contamination may affect the soil microbial community, in terms of both diversity and function. A laboratory experiment was set-up, with a semi-arid control soil and the same soil but artificially contaminated with diesel oil, to follow changes in the dominant species of the microbial community in the hydrocarbon-polluted soil via proteomics. Analysis of the proteins extracted from enriched cultures growing in Luria-Bertani (LB) media showed a change in the microbial community. The majority of the proteins were related to gIycolysis pathways, structural or protein synthesis. The results showed a relative increase in the complexity of the soil microbial community with hydrocarbon contamination, especially after 15 days of incubation. Species such as Ralstonia solanacearum, Synechococcus elongatus and different Clostridium sp. were adapted to contamination, not appearing in the control soil, although Bacillus sp. dominated the growing in LB in any of the treatments. We conclude that the identification of microbial species in soil extracts by culture-dependent proteomics is able to partially explain the changes in the diversity of the soil microbial community in hydrocarbon polluted semi-arid soils, but this information is much more limited than that provided by molecular methods.展开更多
A detailed investigation was conducted to understand the contamination characteristics and distributions of heavy metal pollution in terms of contributions of the heavy metal concentrations as mg/kg ofCd, Cr, Cu, Ni, ...A detailed investigation was conducted to understand the contamination characteristics and distributions of heavy metal pollution in terms of contributions of the heavy metal concentrations as mg/kg ofCd, Cr, Cu, Ni, Zn, Pb, Fe and Mn in the urban soil in Eskisehir city center. The amount of these heavy metals were determined from 15 soil sample points collected within urban area and every sample point included 6 separated samples for chemical analyses. The results indicated that concentration values of all metals except Ni and Cr in soils were below the risky limit pollution values which are recommended by Turkey Ministry of Environment and Forestry in some sample points. Spatial distribution maps were created and recoded, in terms of these heavy metals concentrations as contribution to heavy metal pollution in soil, through Geographical Information Systems techniques. As a result, risky areas were modeled in terms of contamination of heavy metal and it is shown that, every different risky area can be interpreted based on buildings in city center quickly and easily.展开更多
The most recent in vitro tests used to determine metal bioaccessiblility are generally time-consuming and expensive. This study aimed at determining potential relationships between the concentrations of metals extract...The most recent in vitro tests used to determine metal bioaccessiblility are generally time-consuming and expensive. This study aimed at determining potential relationships between the concentrations of metals extracted using single-extraction methods and the concentrations of bioaccessible metals assessed by a harmonised in vitro test, the Unified BARGE Method (UBM). A total number of 27 soil samples were collected from kitchen gardens and lawns with various physicochemical parameters and contamination levels. Significant relationships were obtained between Cd, Pb and Zn extracted in gastric and gastrointestinal phases and using single extractions. The best relationhips were established using acetic and citric acids for Cd, whereas for Pb, citric acid and ethylenedi- aminetetraacetic acid (EDTA) were identified as the best extractants. These relationships were improved by means of a linear multiple regression with a downward stepwise procedure involving agronomic parameters (soil cation exchange capacity and assimilated P). This method highlighted the fact that the cation exchange capacity and P contents in soils were the two main parameters that controlled the human bioaccessibility of Cd, Pb and Zn in the gastric phase. Besides, the metal concentrations extracted with the acetic and citric acids correlated well with the metal concentrations in the gastric and gastrointestinal phases, suggesting that the bioaceessible metals were mainly in a soluble form, weakly bound to the organic matter and associated with the carbonates and the Fe and Mn oxides/hydroxides in soils.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 40401025 and 49871005)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0412)
文摘To identify the main sources responsible for soil heavy metal contamination, 70 topsoils were sampled from the Daxing County in the urban-rural transition zone of Beijing. The concentrations of heavy metals Cu, Zn, Pb, Cr, Cd, Ni, As, Se, Hg, and Co; the soil texture; and the organic matter content were determined for each soil sample. Descriptive statistics and geostatistics were used to analyze the data, and Kriging analysis was used to estimate the unobserved points and to map the spatial patterns of soil heavy metals. The results showed that the concentrations of all the soil heavy metals exceeded their background levels with the exception of As and Se. However, only the Cd concentration in some areas exceeded the critical value of the national soil quality standard. The semivariance analysis showed that the spatial correlation distances for soil Cu, Zn, Cr, Cd, As, Ni, and Co ranged from 4.0 to 7.0 km, but soil Se, Pb, and Hg had a larger correlation distance. Soil Co, Se, Cd, Cu and Zn showed a strong spatial correlation, whereas the other soil heavy metals showed medium spatial correlation. Soil heavy metal concentrations were related to soil texture, organic matter content, and the accumulation of heavy metals in the soils, which was because of air deposition and use of water from the Liangshui, Xinfeng, and Fenghe rivers that are contaminated by wastewater and sewage for the purpose of irrigation of fields. Hence, a comprehensive treatment plan for these rivers should be formulated.
基金Project supported by the Guangdong Environmental Protection Bureau of China (No.2001-27)Guangdong Provincial Department of Science and Technology,China (No.2004A30308002)State Key Laboratory of Environment Geochemistry,Chinese Academy of Sciences
文摘Soil contamination in the vicinity of the Dabaoshan Mine, Guangdong Province, China, was studied through determi- nation of total concentrations and chemical speciation of the toxic metals, Cu, Zn, Cd, and Pb, using inductively coupled plasma mass spectrometry. The results showed that over the past decades, the environmental pollution was caused by a combination of Cu, Zn, Cd, and Pb, with tailings and acid mine drainage being the main pollution sources affecting soils. Significantly higher levels (P ≤ 0.05) of Cu, Zn, Cd, and Pb were found in the tailings as compared with paddy, garden, and control soils, with averages of 1486, 2516, 6.42, and 429 mg kg^-1, respectively. These metals were continuously dispersed downstream from the tallings and waste waters, and therefore their concentrations in the paddy soils were as high as 567, 1 140, 2.48, and 191 mg kg^-1, respectively, being significantly higher (P ≤ 0.05) as compared with those in the garden soils. The results of sequential extraction of the above metals from all the soil types showed that the residual fraction was the dominant form. However, the amounts of metals that were bound to Fe-Mn oxides and organic matter were relatively higher than those bound to carbonates or those that existed in exchangeable forms. As metals could be transformed from an inert state to an active state, the potential environmental risk due to these metals would increase with time.
基金China Scholarship Council(No.97842039)National Natural Science Foundation of China(No.20107005)
文摘A microscopic diffusion-reaction modei was developed to simulate in-situ ozonation for the remediation of contaminated soil, i.e., to predict the temporal and spatial distribution of target contaminant in the subsurface. The sequential strategy was employed to obtain the numerical solution of the modei using finite difference method. A non-uniform grid of discretization points was emploved to increase the accuracy of the numerical solution by means of coordinate transformation. One-dimensional column tests were conducted to verify the modei. The column was packed with simulated soils that were spiked with 2-chlorophenol. Ozone gas passed through the column at a flow rate of 100ml·min-1. The residual 2-chlorophenol content at different depths of the column was determined at fixed time intervals. Compared the experimental data with the simulated values, it was found that the mathematical modei fitted data well during most time of the experiment.
基金supported by Chevron Corporationsupport of NSF EAR 0949337
文摘Thermal treatment technologies hold an important niche in the remediation of hydrocarbon- contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high temperature can be energy intensive and can damage soil properties. Despite the broad applicability and prevalence of thermal remediation, little work has been done to improve the environmental compatibility and sustainahility of these technologies. We review several common thermal treatment technologies for hydrocarbon-contaminated soils, assess their potential environmental impacts, and propose frameworks for sustainable and low-impact deployment based on a holistic consideration of energy and water requirements, ecosystem ecology, and soil science. There is no universally appropriate thermal treatment technology. Rather, the appropriate choice depends on the contamination scenario (including the type of hydrocarbons present) and on site-specific considerations such as soil properties, water availability, and the heat sensitivity of contaminated soils. Overall, the convergence of treatment process engineering with soil science, ecosystem ecology, and plant biology research is essential to fill critical knowledge gaps and improve both the removal efficiency and sustainability of thermal technologies.
基金supported by the National Programme for Research and Development, Spanish Ministry of Science (No.AMB97-1062).
文摘Atmospheric emissions of fluoride from an aiuminium smelter-alumina refinery located on the northern coast of Galicia, NW Spain, increase the content of fluorine in soils and vegetation in the vicinity of the complex. The effects of the addition of fluoride solutions on the chemical properties of soil samples from the area surrounding the complex were investigated in laboratory experiments. Addition of fluoride to soils resulted in increases in pH and concentrations of Fe, A1, and organic matter in the equilibrium solutions and decreases in concentrations of Ca, Mg, and K. No consistent effects were observed on the Cu, Mn, or Zn concentrations. Most of the A1 in solution was bound to organic matter. Within the fraction "labile aluminium', the concentration of A1-OH complexes decreased and the A1-F complexes increased, especially A1F3 and A1F4^-, which are less toxic than Al^3+ and A1-OH species.
基金Supported by the JAE-Program for Ph.D. Students of Spanish Research Council
文摘Hydrocarbon contamination may affect the soil microbial community, in terms of both diversity and function. A laboratory experiment was set-up, with a semi-arid control soil and the same soil but artificially contaminated with diesel oil, to follow changes in the dominant species of the microbial community in the hydrocarbon-polluted soil via proteomics. Analysis of the proteins extracted from enriched cultures growing in Luria-Bertani (LB) media showed a change in the microbial community. The majority of the proteins were related to gIycolysis pathways, structural or protein synthesis. The results showed a relative increase in the complexity of the soil microbial community with hydrocarbon contamination, especially after 15 days of incubation. Species such as Ralstonia solanacearum, Synechococcus elongatus and different Clostridium sp. were adapted to contamination, not appearing in the control soil, although Bacillus sp. dominated the growing in LB in any of the treatments. We conclude that the identification of microbial species in soil extracts by culture-dependent proteomics is able to partially explain the changes in the diversity of the soil microbial community in hydrocarbon polluted semi-arid soils, but this information is much more limited than that provided by molecular methods.
文摘A detailed investigation was conducted to understand the contamination characteristics and distributions of heavy metal pollution in terms of contributions of the heavy metal concentrations as mg/kg ofCd, Cr, Cu, Ni, Zn, Pb, Fe and Mn in the urban soil in Eskisehir city center. The amount of these heavy metals were determined from 15 soil sample points collected within urban area and every sample point included 6 separated samples for chemical analyses. The results indicated that concentration values of all metals except Ni and Cr in soils were below the risky limit pollution values which are recommended by Turkey Ministry of Environment and Forestry in some sample points. Spatial distribution maps were created and recoded, in terms of these heavy metals concentrations as contribution to heavy metal pollution in soil, through Geographical Information Systems techniques. As a result, risky areas were modeled in terms of contamination of heavy metal and it is shown that, every different risky area can be interpreted based on buildings in city center quickly and easily.
基金the Nord-Pas de Calais Council and Agence de l’Environnement et de la Matrise de l’Energie (ADEME), France, for the financial support of this research
文摘The most recent in vitro tests used to determine metal bioaccessiblility are generally time-consuming and expensive. This study aimed at determining potential relationships between the concentrations of metals extracted using single-extraction methods and the concentrations of bioaccessible metals assessed by a harmonised in vitro test, the Unified BARGE Method (UBM). A total number of 27 soil samples were collected from kitchen gardens and lawns with various physicochemical parameters and contamination levels. Significant relationships were obtained between Cd, Pb and Zn extracted in gastric and gastrointestinal phases and using single extractions. The best relationhips were established using acetic and citric acids for Cd, whereas for Pb, citric acid and ethylenedi- aminetetraacetic acid (EDTA) were identified as the best extractants. These relationships were improved by means of a linear multiple regression with a downward stepwise procedure involving agronomic parameters (soil cation exchange capacity and assimilated P). This method highlighted the fact that the cation exchange capacity and P contents in soils were the two main parameters that controlled the human bioaccessibility of Cd, Pb and Zn in the gastric phase. Besides, the metal concentrations extracted with the acetic and citric acids correlated well with the metal concentrations in the gastric and gastrointestinal phases, suggesting that the bioaceessible metals were mainly in a soluble form, weakly bound to the organic matter and associated with the carbonates and the Fe and Mn oxides/hydroxides in soils.