期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
凋落物处理对大兴安岭多年冻土区白桦林土壤磷组分的影响
1
作者 赵佳龙 满秀玲 +1 位作者 高明磊 刘巧娟 《冰川冻土》 CSCD 2024年第3期1043-1054,共12页
磷是植物生长发育过程中必不可少的元素,探究大兴安岭多年冻土区凋落物输入变化对不同林龄白桦林土壤磷组分的影响,能够为气候变化条件下高纬度地区森林生态系统磷有效性及影响机制研究提供参考。本文选择大兴安岭多年冻土区不同林龄(3... 磷是植物生长发育过程中必不可少的元素,探究大兴安岭多年冻土区凋落物输入变化对不同林龄白桦林土壤磷组分的影响,能够为气候变化条件下高纬度地区森林生态系统磷有效性及影响机制研究提供参考。本文选择大兴安岭多年冻土区不同林龄(30 a、45 a、66 a)白桦林为研究对象,于2021年10月分别进行了凋落物去除和凋落物加倍处理,在2022年8月进行取样,采用Hedley磷分级法对0~20 cm土层土壤磷组分及环境因子进行测定与分析,探究凋落物对多年冻土区森林土壤磷组分的影响。结果表明,凋落物加倍处理提高了3个林龄白桦林土壤活性磷和中等活性磷含量,其中30 a白桦林0~10 cm土层土壤H2O-Pi含量增加显著(P<0.05),3个林龄白桦林10~20 cm土层土壤NaHCO_(3)-Pi含量均显著增加(P<0.05),30 a白桦林0~20 cm土层土壤NaOH-Pi含量显著增加(P<0.05)。而去除凋落物处理降低了3个林龄白桦林土壤活性磷和中等活性磷含量,其中,30 a和45 a白桦林各土层土壤NaOH-Pi含量显著下降(P<0.05),66 a白桦林0~20 cm土层土壤磷含量下降程度各不相同。凋落物处理对稳定态磷(HCl-Pi、HCl-Po、Residual-P)影响相对较小。冗余分析表明,30 a白桦林土壤磷组分主要受pH和可溶性有机碳的影响,45 a白桦林主要受pH和NO_(3)--N的影响,而66 a白桦林主要受土壤含水率和可溶性有机碳的影响。凋落物输入增加会促进寒温带白桦林土壤磷的活性,提高土壤磷的有效性。因此,在白桦林经营管理过程中,要保护好凋落物。 展开更多
关键词 多年冻土区 次生林 凋落物 土壤活性磷 林龄
下载PDF
Effect of Combined Heavy Metal Pollution on Nitrogen Mineralization Potential,Urease and Phosphatase Activities in a Typic Udic Ferrisol 被引量:13
2
作者 ZHENG CHUNRONG TU CONG and CHEN HUAIMAN(Laboratory of Material Cycling in Pedosphere, Institute of Soil Science, the Chinese Academy of Sciences,Nanjing 210008 (China))(Received April 20, 1999 revised June 2, 1999) 《Pedosphere》 SCIE CAS CSCD 1999年第3期251-258,共8页
Individual and combined effects of Cu, Pb, Zn and Cd on N mineralization, urease and phosphatase were examined in a Typic Udic Ferrisol in laboratory by employing an uniform design and a single factor design.Soil poll... Individual and combined effects of Cu, Pb, Zn and Cd on N mineralization, urease and phosphatase were examined in a Typic Udic Ferrisol in laboratory by employing an uniform design and a single factor design.Soil pollution caused by heavy metals inhibited N mineralization (No value) and urease and phosphatase activities. The combined pollution of metals alleviated their toxicity to N mineralization to some extent,whereas aggravated the toxicity to urease and phosphatase. Phosphorous application could mitigate the toxic effect of heavy metals on phosphatase activities, while alleviating effect of N application on the toxicity of heavy metals to urease was inconsistent. However, the mitigating effect of the fertilizers was limited in heavily polluted soils. 展开更多
关键词 heavy metal pollution N mineralization PHOSPHATASE UREASE
下载PDF
Studies on the Effects of Polyaspartate Protease Fertilizer Enhancer in the Absorptions of Soil Nutrition and the Enzymatic Activities of Crops
3
作者 JIANGGuoliang YANGDong +3 位作者 LIUYun ZHANGGuanghua LIZhongjun ZHANGXinhua 《Journal of Ocean University of Qingdao》 2003年第1期62-64,共3页
The effects of polyaspartate protease fertilizer enhancer, made from oyster shell proteins, on the absorption of soil nutrition and the enzymatic activities of crops were studied. It has been found that the enhancer c... The effects of polyaspartate protease fertilizer enhancer, made from oyster shell proteins, on the absorption of soil nutrition and the enzymatic activities of crops were studied. It has been found that the enhancer contributes 30%, 50% and 50% augmentation of nitrogen (N), phosphate (P) and potassium (K) absorption respectively and about 20% of nitrate reductase and peroxide enzyme activities of crops. These results show that polyaspartate protease fertilizer enhancer could improve significantly the absorption and utilization efficiencies of soil nutrition and the activities of nitrate reductase and peroxide enzyme of crops, thus elevating the utilization rates of chemical fertilizers to a certain extent. 展开更多
关键词 polyaspartate protease fertilizer enhancer absorption soil nutrition enzyme activity
下载PDF
Inhibitory effect of Cr(Ⅵ) on activities of soil enzymes
4
作者 彭兵 黄顺红 +3 位作者 杨志辉 柴立元 许友泽 苏长青 《Journal of Central South University》 SCIE EI CAS 2009年第4期594-598,共5页
To evaluate the influence of various Cr(Ⅵ) concentrations (0.05, 0.25, 0.50, 1.00 and 2.00 g/kg) on the activity of soil enzymes, the activities of catalase, polyphenol oxidase, dehydrogenase, alkaline phosphatase in... To evaluate the influence of various Cr(Ⅵ) concentrations (0.05, 0.25, 0.50, 1.00 and 2.00 g/kg) on the activity of soil enzymes, the activities of catalase, polyphenol oxidase, dehydrogenase, alkaline phosphatase in soils were investigated in the incubation experiment with a period of 35 d. The results indicate that all the tested Cr(Ⅵ) concentrations significantly inhibit dehydrogenase activity by over 70% after 35 d. The activity of alkaline phosphatase is slightly inhibited during the whole experiment except for on the day 7. Cr(Ⅵ) has no obvious effect on the activity of catalase in soil. On the contrary, Cr(Ⅵ) stimulates the activity of polyphenol oxidase. The results suggest that dehydrogenase activity can be used as an indicator for assessing the severity of chromium pollution. 展开更多
关键词 Cr(Ⅵ) SOIL POLLUTION enzyme activity INHIBITION
下载PDF
Soil Enzyme Activities on Eroded Slopes in the Sichuan Basin, China 被引量:7
5
作者 NIE Xiaojun ZHANG Jianhui GAO Han 《Pedosphere》 SCIE CAS CSCD 2015年第4期489-500,共12页
Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and eros... Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and erosion type by selecting water and tillage erosion-dominated slopes and performing analyses using the 1376s technique. The 137Cs data revealed that soil loss occurred in the upper section of the two eroded slope types, while soil accumulation occurred in the lower section. The invertase activity increased downslope and exhibited a pattern similar to the 137Cs data. The spatial patterns of urease and alkaline phosphatase activities were similar to the 137Cs inventories on the water and tillage erosion-dominated slopes, respectively. On both the eroded slope types, the invertase activity and soil organic carbon content were correlated, but no correlation was observed between the alkaline phosphatase activity and total phosphorus content. Nevertheless, the urease activity was correlated with the total nitrogen content only on the water erosion-dominated slopes. The enzyme activity-to-microbial biomass carbon ratios indicated high activities of invertase and urease but low activity of phosphatase on the water erosion-dominated slopes compared with the tillage erosion-dominated slopes. Both the invertase activity and the invertase activity-to-microbial biomass carbon ratio varied with the slope position. Changes in the urease activity-to-microbial biomass carbon ratio were significantly affected by the erosion type. These suggested that the dynamics of the invertase activity were linked to soil redistribution on the two eroded slope types, whereas the dynamics of the urease and alkaline phosphatase activities were associated with soil redistribution only on the water or tillage erosion-dominated slopes, respectively. The erosion type had an obvious effect on the activities of invertase, urease and alkaline phosphatase. Soil redistribution might influence the involvement of urease in the N cycle and alkaline phosphatase in the P cycle. Thus, enzyme activity-to-microbial biomass ratios may be used to better evaluate microbiological activity in eroded soils. 展开更多
关键词 137Cs technique microbial biomass C N cycle P cycle soil organic C soil redistribution tillage erosion water erosion
原文传递
Enzyme Activities and Microbial Communities in Subtropical Forest Soil Aggregates to Ammonium and Nitrate-Nitrogen Additions 被引量:6
6
作者 WEI Yan WANG Zhongqiang +3 位作者 ZHANG Xinyu YANG Hao LIU Xiyu LIU Wenjing 《Journal of Resources and Ecology》 CSCD 2017年第3期258-267,共10页
A laboratory incubation experiment was established to examine the impacts of nitrate and ammonium nitrogen additions on soil microbial attributes of a subtropical Pinus elliottii forest ecosystem in southern China. So... A laboratory incubation experiment was established to examine the impacts of nitrate and ammonium nitrogen additions on soil microbial attributes of a subtropical Pinus elliottii forest ecosystem in southern China. Soils were subjected to three different treatments: the control with no nitrogen addition (CK), the ammonium nitrogen addition (NH4^+-N), and the nitrate nitrogen addition (NO23^-N). Samples from bulk and two different size fractions (macroaggregate (〉250 pm) and microaggregate (53-250 μm)) were analyzed for soil properties, enzyme activities and microbial communities on day 7 and 15 of the incubation. Our study demonstrated that NH4^+-N had a 9rearer influence on soil microbial activities than NO3-N. NH4^+-N additions resulted in significant increases in 13-1,4-glucosidase (βG) and β-1,4-N-acetyl glucosaminidase (NAG) enzyme activities in bulk, macroaggregate and microag- gregate soils after 7 and 15 days incubation. NO3^-N additions only significantly increased in βG and NAG enzyme activities in bulk, macroaggregate soils after 7 and 15 days incubation, but not in microaggregate. All NH4^+-N and NO3-N additions resulted in significant increases in gram-positive bacterial PLFAs in microaggregates. Only a significant correlation between soil nutrient contents and enzyme activities in macroaggregates was founded, which suggests that the soil aggregation structure played an important role in the determining enzyme activities. 展开更多
关键词 nitrate nitrogen ammonium nitrogen soil aggregate enzyme activity phosphor-lipid fatty acid (PLFA).
原文传递
Effect of Lead on Soil Enzyme Activities in Two Red Soils 被引量:1
7
作者 YANG Jin-Yan HE Zhen-Li +1 位作者 YANG Xiao-E LI Ting-Qiang 《Pedosphere》 SCIE CAS CSCD 2014年第6期817-826,共10页
Enzyme activities have the potential to indicate biological functioning of soils. In this study, soil urease, dehydrogenase, acid phosphatase and invertase activities and fluorescein diacetate(FDA) hydrolysis were mea... Enzyme activities have the potential to indicate biological functioning of soils. In this study, soil urease, dehydrogenase, acid phosphatase and invertase activities and fluorescein diacetate(FDA) hydrolysis were measured in two red soils spiked with Pb2+ranging from 0 to 2 400 mg kg-1to relate the enzyme activity values to both plant growth and the levels of available and total Pb2+concentrations in soils, and to examine the potential use of soil enzymes to assess the degrees of Pb contamination. Soil samples were taken for enzyme activities assaying during 3 month's incubation and then after planting of celery(Apium graveolens L.) and Chinese cabbage(Brassica chinensis L.). Enzyme activities in the red soil derived from arenaceous rock(RAR) were generally lower than those in the red soil developed on Quaternary red earths(REQ). At high Pb2+loadings, in both incubation and greenhouse studies, urease activity and FDA hydrolysis were significantly inhibited. But there were no significant relationships between soil dehydrogenase, acid phosphatase or invertase activity and soil Pb2+loadings in both RAR and REQ soils. The growth of celery and Chinese cabbage increased soil urease activity and FDA hydrolysis, but had minimal effect on dehydrogenase and invertase activities. There were positive correlations between celery biomass and soil urease activity and FDA hydrolysis. These results demonstrate that urease activity and FDA hydrolysis are more sensitive to Pb2+than acid phosphatase, dehydrogenase and invertase activities in the RAR and REQ soils. 展开更多
关键词 fluorescein diacetate hydrolysis heavy metal plant biomass UREASE
原文传递
Responses of Soil Acid Phosphomonoesterase Activity to Simulated Nitrogen Deposition in Three Forests of Subtropical China 被引量:13
8
作者 HUANG Wen-Juan ZHANG De-Qiang +8 位作者 LI Yue-Lin LU XianKai ZHANG Wei HUANG Juan D.OTIENO Z.H.XU LIU Ju-Xiu LIU Shi-Zhong CHU Guo-Wei 《Pedosphere》 SCIE CAS CSCD 2012年第5期698-706,共9页
Soil acid phosphomonoesterase activity (APA) plays a vital role in controlling phosphorus (P) cycling and reflecting the current degree of P limitation. Responses of soil APA to elevating nitrogen (N) deposition are i... Soil acid phosphomonoesterase activity (APA) plays a vital role in controlling phosphorus (P) cycling and reflecting the current degree of P limitation. Responses of soil APA to elevating nitrogen (N) deposition are important because of their potential applications in addressing the relationship between N and P in forest ecosystems. A study of responses of soil APA to simulated N deposition was conducted in three succession forests of subtropical China. The three forests include a Masson pine (Pinus massoniana) forest (MPF)-pioneer community, a coniferous and broad-leaved mixed forest (MF)-transition community and a monsoon evergreen broad-leaved forest (MEBF)-climax community. Four N treatments were designed for MEBF: control (without N added), low-N (50 kg N ha-1 year-1), and medium-N (100 kg N ha-1 year-1) and high-N (150 kg N ha-1 year-1), and only three N treatments (i.e., control, low-N, medium-N) were established for MPF and MF. Results showed that soil APA was highest in MEBF, followed by MPF and MF. Soil APAs in both MPF and MF were not influenced by low-N treatments but depressed in medium-N treatments. However, soil APA in MEBF exhibited negative responses to high N additions, indicating that the environment of enhanced N depositions would reduce P supply for the mature forest ecosystem. Soil APA and its responses to N additions in subtropical forests were closely related to the succession stages in the forests. 展开更多
关键词 Dinghushan Biosphere Reserve forest ecosystems forest succession phosphorus limitation subtropical region
原文传递
Microbial Populations,Activity and Gene Abundance in Tropical Vertisols Under Intensive Chemical Farming
9
作者 Kopparapu APARNA Desiraju Lakshmi Narsimha RAO Dananjeyan BALACHANDAR 《Pedosphere》 SCIE CAS CSCD 2016年第5期725-732,共8页
There are increasing concerns on the environmental impacts of intensive chemical agriculture. The effect of high agrochemical inputs used in intensive chemical farming was assessed on soil microbiological, molecular a... There are increasing concerns on the environmental impacts of intensive chemical agriculture. The effect of high agrochemical inputs used in intensive chemical farming was assessed on soil microbiological, molecular and biochemical properties in tropical Vertisols in India. Farm field sites under normal cultivation of arable crops using high inputs of fertilizers and pesticides in chili (Capsicum annum L., 5.0× dose for fertilizers and 1.5× dose for pesticides over normal inputs) and black gram (Vigna mungo L. Hepper, 2.2× dose for fertilizers and 2.3× dose for pesticides over normal inputs) were compared with adjacent sites using normal recommended doses. Organic carbon and basal respiration showed no response to high inputs of fertilizers and pesticides in soils of both crops. Labile carbon decreased by 10% in chili soils and increased by 24% in black gram soils under high input farming system. The proportion of soil labile carbon as a fraction of soil organic carbon was unaffected by high inputs. The labile carbon mineralization coefficient (qMLc) increased by 50.0% in chili soils, indicating that the soil microorganisms were under stress due to high agochemical inputs, whereas qMLc decreased by 36.4% in black gram soils. Copiotrophs increased due to high inputs in soils of both chili (63.1%) and black gram (47.1%). Oligotrophs increased by 10.8% in black gram soils but not in chili soils. The abundance of amoA gene reduced by 39.3% in chili soils due to high inputs and increased significantly by 110.8% in black gram soils. β-Glucosidase also increased by 27.2% and 325.0%, respectively. Acid phosphatase activity reduced by 29.2% due to high inputs in chili soils and increased by 105.0% in black gram soils. The use of high agrochemical inputs thus had adverse consequences on biological health in chili but not in black gram soils. In soils cultivated with black gram, the moderating effect of cultivating legumes and their beneficial effect on soil health were evident from the increase in soil labile carbon, lower qMLc, higher amoA gene and enzyme activities. Overall results showed that cultivation of legumes permits intensive chemical farming without deteriorating soil biological health. 展开更多
关键词 amoA gene copiotrophs high agrochemical input legumes oligotrophs soil enzymes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部