Effects of temperature and drying and wetting alternation(DWA)on ammonium fixation in manured loessial soil were studied by means of Batch Equilibrium with Varying concentration solutions of ammonium chloride,ammonium...Effects of temperature and drying and wetting alternation(DWA)on ammonium fixation in manured loessial soil were studied by means of Batch Equilibrium with Varying concentration solutions of ammonium chloride,ammonium fixation time,and soil clay contents.The purpose of the research was to find out the pattern of ammonium fixation ted by the varying factors.The results showed a remarkable variation in ammonium fixation.Fixed ammonium increased with temperature and treatments of DWA.The ammonium fixation in manured loessial soil was characterized by the effect of temperature and DWA.展开更多
A new land cover classification system was established for the Three Gorges Reservoir Region(TGRR) after considering the continuity of inundation and the natural characteristics of land cover. The potential evapotrans...A new land cover classification system was established for the Three Gorges Reservoir Region(TGRR) after considering the continuity of inundation and the natural characteristics of land cover. The potential evapotranspiration(PET) was predicted using a modified Penman-Monteith(P-M) model. The region's ratio of precipitation to evapotranspiration was calculated as the humidity index(HI). The data obtained was used to analyze climatic responses to land cover conversions from the perspectives of evapotranspiration and humidity variations. The results show that, from 1997 to 2009, the average annual PET increased in the early years and decreased later. In terms of overall spatial distribution, a significant reciprocal relationship appeared between annual PET and annual HI. In 1997,the annual PET was higher in the lower reaches than in the upper reaches of the TGRR, but the areas with high PET shifted substantially westward by 2003. The annual PET continued to increase in 2006, but the areas with high PET shrank by 2009. In contrast, the annual HI showed varying degrees of localized spatial variability. Over the three periods, the dominantforms of land cover conversions occurred from evergreen cover to seasonal green cover, from seasonal green cover to evergreen cover, and from seasonal green cover to seasonally inundated areas, respectively. These accounted for 48.0%, 38.4%, and 23.8% of the total areas of converted land covers in the three periods, respectively. During the period between 1997 and 2003, the main forms of land cover conversions resulted in both positive and negative growths in the average annual PET, while all of them pushed down the average annual HI. From 2003 to 2006, the reservoir region experienced neither a decrease in the annual PET nor an increase in the annual HI. The period between 2006 and 2009 saw a consistent downward trend in the annual PET and a consistent upward trend in the annual HI.展开更多
Understanding the temperature and moisture sensitivity of soil organic matter (SOM) mineralization variations with changes in land cover is critical for assessing soil carbon (C) storage under global change scenar...Understanding the temperature and moisture sensitivity of soil organic matter (SOM) mineralization variations with changes in land cover is critical for assessing soil carbon (C) storage under global change scenarios We determined the differences in the amount of SOM mineralization and the temperature and moisture sensitivity of soils collected from six land-cover types, including an orchard, a cropland, and four forests, in subtropical south- eastern China. The responses of SOM mineralization to temperature (5, 10, 15, 20, and 25~C) and moisture (30%, 60%, and 90% of water-holding capacity [WHC]) were investigated by placing soil samples in incubators. Soil C mineralization rate and cumulative C mineralization were higher in orchard and cropland soils than in other forest soils. With increasing temperature, soil C mineralization rates and cumulative C mineralization increased with the rise of WHCo The temperature sensitivity of soil C mineralization was not affected by land-cover type and incubation moisture. All soil temperature treatments showed a similar response to moisture. Cropland soil was more respon- sive to soil moisture than other soils. Our findings indicate that cropland and orchard soils have a higher ability to emit CO2 than forest soils in subtropical southeastern China.展开更多
文摘Effects of temperature and drying and wetting alternation(DWA)on ammonium fixation in manured loessial soil were studied by means of Batch Equilibrium with Varying concentration solutions of ammonium chloride,ammonium fixation time,and soil clay contents.The purpose of the research was to find out the pattern of ammonium fixation ted by the varying factors.The results showed a remarkable variation in ammonium fixation.Fixed ammonium increased with temperature and treatments of DWA.The ammonium fixation in manured loessial soil was characterized by the effect of temperature and DWA.
基金partially supported and funded by Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2017jcyj B0317)Chongqing University Innovation Team Building Plan (Grant No. CXTDX201601017)Science and Technology Project of Chongqing Municipal Education Commission (Grant No. KJ1738462)
文摘A new land cover classification system was established for the Three Gorges Reservoir Region(TGRR) after considering the continuity of inundation and the natural characteristics of land cover. The potential evapotranspiration(PET) was predicted using a modified Penman-Monteith(P-M) model. The region's ratio of precipitation to evapotranspiration was calculated as the humidity index(HI). The data obtained was used to analyze climatic responses to land cover conversions from the perspectives of evapotranspiration and humidity variations. The results show that, from 1997 to 2009, the average annual PET increased in the early years and decreased later. In terms of overall spatial distribution, a significant reciprocal relationship appeared between annual PET and annual HI. In 1997,the annual PET was higher in the lower reaches than in the upper reaches of the TGRR, but the areas with high PET shifted substantially westward by 2003. The annual PET continued to increase in 2006, but the areas with high PET shrank by 2009. In contrast, the annual HI showed varying degrees of localized spatial variability. Over the three periods, the dominantforms of land cover conversions occurred from evergreen cover to seasonal green cover, from seasonal green cover to evergreen cover, and from seasonal green cover to seasonally inundated areas, respectively. These accounted for 48.0%, 38.4%, and 23.8% of the total areas of converted land covers in the three periods, respectively. During the period between 1997 and 2003, the main forms of land cover conversions resulted in both positive and negative growths in the average annual PET, while all of them pushed down the average annual HI. From 2003 to 2006, the reservoir region experienced neither a decrease in the annual PET nor an increase in the annual HI. The period between 2006 and 2009 saw a consistent downward trend in the annual PET and a consistent upward trend in the annual HI.
基金Natural Sciences Foundation of China(31270519,31470506,31130009,31290221)
文摘Understanding the temperature and moisture sensitivity of soil organic matter (SOM) mineralization variations with changes in land cover is critical for assessing soil carbon (C) storage under global change scenarios We determined the differences in the amount of SOM mineralization and the temperature and moisture sensitivity of soils collected from six land-cover types, including an orchard, a cropland, and four forests, in subtropical south- eastern China. The responses of SOM mineralization to temperature (5, 10, 15, 20, and 25~C) and moisture (30%, 60%, and 90% of water-holding capacity [WHC]) were investigated by placing soil samples in incubators. Soil C mineralization rate and cumulative C mineralization were higher in orchard and cropland soils than in other forest soils. With increasing temperature, soil C mineralization rates and cumulative C mineralization increased with the rise of WHCo The temperature sensitivity of soil C mineralization was not affected by land-cover type and incubation moisture. All soil temperature treatments showed a similar response to moisture. Cropland soil was more respon- sive to soil moisture than other soils. Our findings indicate that cropland and orchard soils have a higher ability to emit CO2 than forest soils in subtropical southeastern China.