A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five d...A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five different levels that were: Cd at 5, 15, 30, 60 and 100 μg g-1; Pb at 100, 200, 300, 450 and 600 μg g-1 and Zn at 50, 100, 150, 200 and 250 μg g-1 soil. In comparison to uncontaminated soil, the microbial biomass carbon and biomass nitrogen decreased sharply in soils contaminated with Cd, Ph and Zn. A more considerable increase in the microbial biomass C: N ratio was observed in the metal contaminated soils than the non-treated control. Among the tested metals, Cd displayed the greatest biocidal effect followed by Zn and Pb, showing their relative toxicity in the order of Cd > Zn > Pb.展开更多
A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient r...A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient regimes, a control, chemical fertilizers only (CF), chemical fertilizers with swine manure (SM), and chemical fertilizers with wheat straw (WS), and two soil moisture regimes, continuous waterlogging (CWL) and alternate wetting and drying (AWD), were investigated. With SM and WS total organic carbon and total nitrogen in the paddy soil were significantly higher (P < 0.05) than those with CF. A similar effect for organic amendments was observed in the soil light fraction organic C (LFOC), water-soluble carbohydrates (WSC), and water-soluble organic C (WSOC). CWL, in particular when swine manure was incorporated into the paddy soil, markedly decreased soil redox potential (Eh) and increased total active reducing substances (ARS). Meanwhile, as compared to CF, SM and WS significantly (P < 0.05) increased soil microbial biomass C (MBC) and mineralizable carbon, with differences in AWD being higher than CWL. In addition, SM and WS treatments significantly (P < 0.05) improved rice above-ground biomass and grain yield, with AWD being greater than CWL. Thus, for ecologically sustainable agricultural management of paddy soils, long-term waterlogging should be avoided when organic manure was incorporated into paddy soil.展开更多
A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey...A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey on soil fertility was carried out 10 years after its establishment. Compared with the control (non-interplanting), the properties of soil humus in agroforestry system were ameliorated, with a higher level of humification and resynthesis of organic detritus. The soil microbial population and enzymatic activities were both higher under the influence of villous amomum. Both the nutrient supplying and nutrient conserving capacities of the soil were improved. This agroforestry system exhibited an advantage of improved soil fertility as well as an accelerated growth of Chinese fir, it was, therefore, a sustainable management system suited for Chinese fir in South China.展开更多
A pot experiment was conducted to determine the dynamics of soil microbial biomass in a rainfed soil under wheat cultivation at the University of Arid Agriculture, Rawalpindi, Pakistan. The treatments applied were: 1)...A pot experiment was conducted to determine the dynamics of soil microbial biomass in a rainfed soil under wheat cultivation at the University of Arid Agriculture, Rawalpindi, Pakistan. The treatments applied were: 1) a control (CK), 2) NPK (0.44-0.26-0.18 g pot-1), 3) farmyard manure (FYM, 110 g pot-1), 4)poultry manure (PM, 110 g pot-1), 5) FYM (110 g pot-1) + NPK (0.44-0.26-0.18 g pot-1), 6) poultry manure (PM, 110 g pot-1) + NPK (0.44-0.26-0.18 g pot-1), 7) FYM (110 g pot-1) + NPK(S) (0.44-0.26-0.18 g pot-1, one half of the NPK at sowing and the other half one month after sowing), and 8) PM (110 g pot-1) + NPK(S) (0.44-0.26-0.18 g pot-1, one half of the NPK applied at sowing and the other half one month after sowing). The experiment was laid out using a completely randomized design with three replications. Microbial biomass C, N and P contents increased continuously from the beginning of the experiment up to the three-leaf stage. A slight decline was observed at the tillering stage in all treatments except with the organic manures + NPK(S) treatments. After tillering there was an increase in all treatments to the recorded maximum point at the full heading stage in all treatments except with the organic manures + NPK(S) treatments. In the FYM + NPK(S) and PM + NPK(S) treatments; however, there was a continuous increase in microbial biomass up to the heading stage. At the harvesting stage a sharp decline was noted in all treatments. The C:N ratio of microbial biomass in tested soil ranged from 7.8 to 11.3, while C:P ratio of microbial biomass in the tested soil ranged from 22.6 to 35.1 throughout all growth stages of the wheat crop.展开更多
Striga hermonthica is a major constraint to smallholder sub-sistence agriculture production in the sub-Saharan African region. Low soil fertility and overall environmental degradation has contributed to the build-up o...Striga hermonthica is a major constraint to smallholder sub-sistence agriculture production in the sub-Saharan African region. Low soil fertility and overall environmental degradation has contributed to the build-up of the parasitic weed infestation. Improved cropping systems have to be introduced to address the interrelated problems of S. her-monthica and soil fertility decline. Thus, the effects of improved fallow with leguminous shrub Sesbania sesban on maize yields and levels of S. hermonthica infestation on farm land in the bimodal highlands of western Kenya were investigated. The experimental treatments were arranged in a phased entry, and randomized complete block scheme were six months Sesbania fallow, 18 months Sesbania fallow, six months natural fallow consisting of regrowth of natural vegetation without cultivation, 18 months natural fallow, continuous maize cropping without fertilizer application, and continuous maize cropping with P and N fertilization. Results show that Sesbania fallows significantly (p0.05) increase maize yield relative to continuous unfertilized maize. S. hermonthica plant populations decrease in continuous maize between the first season (mean = 428 000 ± 63 000 ha-1) and second season (mean=51 000 ± 15 000 ha-1), presumably in response to good weed management. S. hermonthica seed populations in the soil decrease throughout the duration of the experi-ment in the continuous maize treatments. Short-duration Sesbania fal-lows can provide modest yield improvements relative to continuous unfertilized maize, but short-duration weedy fallows are ineffective. Continuous maize cultivation with good weed control may provide more effective S. hermonthica control than fallowing.展开更多
Soil and land degradation in the tropics can be identified and described interms of physical, chemical, and biological changes from its pristine state brought about by naturaland anthropogenic influences. A characteri...Soil and land degradation in the tropics can be identified and described interms of physical, chemical, and biological changes from its pristine state brought about by naturaland anthropogenic influences. A characteristic of these ecosystems is their capacity to recyclenutrients through soil organic matter (SOM). Following disturbance through changed land management,SOM is rapidly mineralized and there is a corresponding decline in fertility and the variable chargecomponent of the cation exchange capacity. As these ecosystems are strongly dependent on SOM fortheir functionality, changed land use can have irreversible impacts on the productivity of thesesystems. The paper focuses on quantifying chemical degradation through 'benchmarking' using datafrom paired sites in tropical China and Thailand using surface charge fingerprinting. Using valuestaken from the fingerprint of an undisturbed soil, an index of chemical degradation from 'ideality'was calculated. Various management strategies that attempt to reverse degradative trends or improvepoor quality soils in their natural condition are discussed, such as the addition of natural claysand silicated materials. Results are present to show the effect of each of the aforementionedstrategies on surface charge characteristics and associated increases in plant productivity.展开更多
Farmers of North-Eastern India grow ginger organically and obtain low yield. Biofertilizer may help in increasing yield and maintaining soil fertility. An investigation made with different biofertilizers showed that s...Farmers of North-Eastern India grow ginger organically and obtain low yield. Biofertilizer may help in increasing yield and maintaining soil fertility. An investigation made with different biofertilizers showed that seed treatment with biofertilizer increased biomass by 18.3%, enhanced N, P and K removal and improved short-term soil fertility status by increasing N and P balance and reducing negative K balance over control plots. Use of high dose (5.0 kg haL) of Azotobacter (a3) and medium dose (3.75 kg hal) of both Azospirillum (b2) and Phosphotica (c2) increased rhizome biomass by 6.8%-12.5% and shoot biomass by 5.6%-14.3% over other levels. They enhanced N, P and K removal by both rhizome and shoot when compared with other levels. The above biofertilizer treatments improved organic carbon and available N and P status of the soil by increasing N and P balance. The result showed overall strong negative K balance; but biofertilizer treatments greatly reduced the negative K balance in soil as compared to the control plots. Seed treatment with high level of Azotobacter along with medium level of Phosphotica (a3c2) produced the highest biomass yield (7.4 t hal), increased N and P balance and fertility status in spite of hizh N, P and K removal.展开更多
Bio-organic fertilizer is a new type of fertilizer which have advantages of both organic manure and fertilizer. This study investigated the effects of bio-organic fertilizer on the growth and yield of cassava and the ...Bio-organic fertilizer is a new type of fertilizer which have advantages of both organic manure and fertilizer. This study investigated the effects of bio-organic fertilizer on the growth and yield of cassava and the soil fertility. The study was carried out in the period of 2004-2005 and the material was cassava cultivar FUXUAN01. The bio-organic fertilizers were applied as basic fertilizers on four different levels of 450 kg/hm^2, 600 kg/hm^2, 750 kg/hm^2, 900 kg/hm^2 in this experiment. The growth of stem and leaf, the yield of earthnut and the starch content of tuber root of cassava and the unit weight, the hole percent, the content of organic matters, nitrogen, phosphorus and potassium, microbes, the activity of soil urease and invertase were analyzed during the experiment. The results showed that not only can the bio-organic fertilizer promote the growth of cassava stems and leaves, increase the chlorophyll content and the photosynthesis of leaves, improve the physiological metabolism of cassava, and strengthen physiological function of anti-senility, promote the transformation from photosynthetic organism to tuber root and increase the yield and starch content in the tuber root of cassava, but also decrease the soil unit weight, increase the hole percent of soil, promote microbe activity in the soil, increase the activity of soil urease and invertase, promote the availability of nutrients, increase the content of organic matters, available nitrogen, phosphorus and potassium, and increase the utilization rate of fertilizer. It was an effective way to apply the bio-organic fertilizer to increase the yield and starch content in the tuber root of cassava, improving the physical and chemical characters of soil and increasing the soil fertility.展开更多
Environmental, biological, socio-cultural and economic status variation existing in the Central Himalaya have led to the evolution of diverse and unique traditional agroecosystems, crop species and livestock, which fa...Environmental, biological, socio-cultural and economic status variation existing in the Central Himalaya have led to the evolution of diverse and unique traditional agroecosystems, crop species and livestock, which facilitate the traditional mountain farming societies to sustain themselves. Indigenous agroecosystems are highly site specific and differ from place to place, as they have evolved along divergent lines. For maintenance of traditional agrodiversity management the farmers of the Central Himalaya have evolved various types of crop rotations in consonance with the varied environmental conditions and agronomic requirements. In irrigated fiat lands two crops are harvested in a year with negligible fallow period but in rainfed conditions if a cropping sequence is presumed to be starting after winter fallow phase then four major cropping seasons can be identified namely first kharif season (first crop season), first rabi season (second crop season), second kharif season (third crop season) and second rabi season (fourth crop season). Highest crop diversity is present in kharif season in comparison to rabi season. Traditionally the fields are left fallow after harvest of the second kharif season crop. Important characteristics of agrodiversity management are the use of bullocks for draughtpower, human energy as labour, crop residues as animal feed and animal waste mixed with forest litter as organic input to restore soil fertility levels. Women provide most of the human labour except for ploughing and threshing grain. The present study deals with assessment of traditional agrodiversity management such as (i) crop diversity, (ii) realized yield under the traditional practices and (iii) assess the differences of realized yields under sole and mixed cropping systems. It indicated that crop rotation is an important feature of the Central Himalayan village ecosystem which helps to continue the diversity of species grown, as are the distribution of crops in the growing period and the management of soil fertility. The cropping diversity existing and the sequences practiced by the traditional farmers seems to have achieved high degree of specialization and thus even when the yield/biomass variations are about 6o%, the farmers continue to practice these sequences as they need to maintain diversity and synergistic relationships of crops in addition to manage the food and labour requirements for crop husbandry. Crop yields are generally higher in irrigated systems than rainfed systems and in sole cropping as compared with mixed cropping. However, gross biological and economic yields are higher in mixed cropping than sole cropping systems.展开更多
Biochar has potentials for soil fertility improvement, climate change mitigation and environmental reclamation, and charred biomass can be deliberately incorporated into soil for long-term carbon stabilization and soi...Biochar has potentials for soil fertility improvement, climate change mitigation and environmental reclamation, and charred biomass can be deliberately incorporated into soil for long-term carbon stabilization and soil amendment. Many different methods have been used for biochar production ranging from laboratory to industrial scales. However, in countryside of developing countries, biomass is generally used for cooking but not charred. Biochar production techniques at farmer scale have remained poorly developed. We developed and tested biochar production kilns for farmers with a dimension of 50.8 cm × 38.1 cm (height × diameter), using three different setups for optimizing oxygen (02) limitation and syngas circulation: airtight with no syngas circulation (Model I), semi-airtight with external syngas circulation (Model II) and semi-airtight with internal syngas circulation (Model III). A comparative assessment of these biochar production kiln models was made considering biochar pyrolysis time, fuel to biomass ratio, biochar to feedstock ratio and thermogravimetric index (TGI). Among the models, the best quality biochar (TGI ---- 0.15) was obtained from Model I kiln taking the longest time for pyrolysis (12.5 h) and the highest amount of fuel wood (1.22 kg kg-1 biomass). Model III kiln produced comparatively good quality biochar (TGI = 0.11), but with less fuel wood requirement (0.33 kg kg-1 biomass) and shorter pyrolysis time (8.5 h). We also tested Model III kiln in a three times larger size under two situations (steel kiln and pit kiln). The biochar to feedstock ratio (0.38) and quality (TGI =0.14) increased slightly for the larger kilns. Quality of biochar was found to be mainly related to pyrolysis time. The costs for the biochar stove and pit kiln were US$ 65-77, while it was US$ 154 for the large size steel kiln. Model III kiln can potentially be used for both cooking and biochar production at farmer scale.展开更多
Addition of biochar produced through thermal decomposition of biomass has been seen as a strategy to improve soils and to sequester carbon (C), but wide scale implementation of the technology requires to devise inno...Addition of biochar produced through thermal decomposition of biomass has been seen as a strategy to improve soils and to sequester carbon (C), but wide scale implementation of the technology requires to devise innovative profitable solutions. To develop biochar utilisation with an integrated system approach, an innovative program was implemented in 2012 on a 53-ha farm in Western Australia to determine the costs and benefits of integrating biochar with animal husbandry and improvement of pastures. Biochar was mixed with molasses and fed directly to cows. The dung-biochar mixture was incorporated into the soft profile by dung beetles. We studied the changes in soil properties over 3 years. Biochar extracted from fresh dung and from the soil to a depth of 40 cm was characterised. A preliminary financial analysis of the costs and benefits of this integrated approach was also undertaken. The preliminary investigation results suggested that this strategy was effective in improving soil properties and increasing returns to the farmer. It was also concluded that the biochar adsorbed nutrients from the cow's gut and from the dung. Dung beetles could transport this nutrient-rich biochar into the soil profile. There was little evidence that the recalcitrant component of the biochar was reduced through reactions inside the gut or on/in the soil. Further research is required to quantify the long-term impact of integrating biochar and dung beetles into the rearing of cows.展开更多
文摘A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five different levels that were: Cd at 5, 15, 30, 60 and 100 μg g-1; Pb at 100, 200, 300, 450 and 600 μg g-1 and Zn at 50, 100, 150, 200 and 250 μg g-1 soil. In comparison to uncontaminated soil, the microbial biomass carbon and biomass nitrogen decreased sharply in soils contaminated with Cd, Ph and Zn. A more considerable increase in the microbial biomass C: N ratio was observed in the metal contaminated soils than the non-treated control. Among the tested metals, Cd displayed the greatest biocidal effect followed by Zn and Pb, showing their relative toxicity in the order of Cd > Zn > Pb.
基金1Project supported by the Knowledge Innovative Program of the Chinese Academy of Sciences (No. KZCX2-413) andthe National High Technology Research and Development Program of China (863 Program) (No. 2002AA601012).
文摘A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient regimes, a control, chemical fertilizers only (CF), chemical fertilizers with swine manure (SM), and chemical fertilizers with wheat straw (WS), and two soil moisture regimes, continuous waterlogging (CWL) and alternate wetting and drying (AWD), were investigated. With SM and WS total organic carbon and total nitrogen in the paddy soil were significantly higher (P < 0.05) than those with CF. A similar effect for organic amendments was observed in the soil light fraction organic C (LFOC), water-soluble carbohydrates (WSC), and water-soluble organic C (WSOC). CWL, in particular when swine manure was incorporated into the paddy soil, markedly decreased soil redox potential (Eh) and increased total active reducing substances (ARS). Meanwhile, as compared to CF, SM and WS significantly (P < 0.05) increased soil microbial biomass C (MBC) and mineralizable carbon, with differences in AWD being higher than CWL. In addition, SM and WS treatments significantly (P < 0.05) improved rice above-ground biomass and grain yield, with AWD being greater than CWL. Thus, for ecologically sustainable agricultural management of paddy soils, long-term waterlogging should be avoided when organic manure was incorporated into paddy soil.
基金Project partly supported by the Natural Science Foundation of Fujian Province.
文摘A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey on soil fertility was carried out 10 years after its establishment. Compared with the control (non-interplanting), the properties of soil humus in agroforestry system were ameliorated, with a higher level of humification and resynthesis of organic detritus. The soil microbial population and enzymatic activities were both higher under the influence of villous amomum. Both the nutrient supplying and nutrient conserving capacities of the soil were improved. This agroforestry system exhibited an advantage of improved soil fertility as well as an accelerated growth of Chinese fir, it was, therefore, a sustainable management system suited for Chinese fir in South China.
文摘A pot experiment was conducted to determine the dynamics of soil microbial biomass in a rainfed soil under wheat cultivation at the University of Arid Agriculture, Rawalpindi, Pakistan. The treatments applied were: 1) a control (CK), 2) NPK (0.44-0.26-0.18 g pot-1), 3) farmyard manure (FYM, 110 g pot-1), 4)poultry manure (PM, 110 g pot-1), 5) FYM (110 g pot-1) + NPK (0.44-0.26-0.18 g pot-1), 6) poultry manure (PM, 110 g pot-1) + NPK (0.44-0.26-0.18 g pot-1), 7) FYM (110 g pot-1) + NPK(S) (0.44-0.26-0.18 g pot-1, one half of the NPK at sowing and the other half one month after sowing), and 8) PM (110 g pot-1) + NPK(S) (0.44-0.26-0.18 g pot-1, one half of the NPK applied at sowing and the other half one month after sowing). The experiment was laid out using a completely randomized design with three replications. Microbial biomass C, N and P contents increased continuously from the beginning of the experiment up to the three-leaf stage. A slight decline was observed at the tillering stage in all treatments except with the organic manures + NPK(S) treatments. After tillering there was an increase in all treatments to the recorded maximum point at the full heading stage in all treatments except with the organic manures + NPK(S) treatments. In the FYM + NPK(S) and PM + NPK(S) treatments; however, there was a continuous increase in microbial biomass up to the heading stage. At the harvesting stage a sharp decline was noted in all treatments. The C:N ratio of microbial biomass in tested soil ranged from 7.8 to 11.3, while C:P ratio of microbial biomass in the tested soil ranged from 22.6 to 35.1 throughout all growth stages of the wheat crop.
基金supported by Swedish International Development Cooperation Agency (Sida)
文摘Striga hermonthica is a major constraint to smallholder sub-sistence agriculture production in the sub-Saharan African region. Low soil fertility and overall environmental degradation has contributed to the build-up of the parasitic weed infestation. Improved cropping systems have to be introduced to address the interrelated problems of S. her-monthica and soil fertility decline. Thus, the effects of improved fallow with leguminous shrub Sesbania sesban on maize yields and levels of S. hermonthica infestation on farm land in the bimodal highlands of western Kenya were investigated. The experimental treatments were arranged in a phased entry, and randomized complete block scheme were six months Sesbania fallow, 18 months Sesbania fallow, six months natural fallow consisting of regrowth of natural vegetation without cultivation, 18 months natural fallow, continuous maize cropping without fertilizer application, and continuous maize cropping with P and N fertilization. Results show that Sesbania fallows significantly (p0.05) increase maize yield relative to continuous unfertilized maize. S. hermonthica plant populations decrease in continuous maize between the first season (mean = 428 000 ± 63 000 ha-1) and second season (mean=51 000 ± 15 000 ha-1), presumably in response to good weed management. S. hermonthica seed populations in the soil decrease throughout the duration of the experi-ment in the continuous maize treatments. Short-duration Sesbania fal-lows can provide modest yield improvements relative to continuous unfertilized maize, but short-duration weedy fallows are ineffective. Continuous maize cultivation with good weed control may provide more effective S. hermonthica control than fallowing.
基金Project financially supported by the Australian Centre for International Agricultural Research(ACIAR) and the Sugar Research and Development Corporation(SRDC),Australia.
文摘Soil and land degradation in the tropics can be identified and described interms of physical, chemical, and biological changes from its pristine state brought about by naturaland anthropogenic influences. A characteristic of these ecosystems is their capacity to recyclenutrients through soil organic matter (SOM). Following disturbance through changed land management,SOM is rapidly mineralized and there is a corresponding decline in fertility and the variable chargecomponent of the cation exchange capacity. As these ecosystems are strongly dependent on SOM fortheir functionality, changed land use can have irreversible impacts on the productivity of thesesystems. The paper focuses on quantifying chemical degradation through 'benchmarking' using datafrom paired sites in tropical China and Thailand using surface charge fingerprinting. Using valuestaken from the fingerprint of an undisturbed soil, an index of chemical degradation from 'ideality'was calculated. Various management strategies that attempt to reverse degradative trends or improvepoor quality soils in their natural condition are discussed, such as the addition of natural claysand silicated materials. Results are present to show the effect of each of the aforementionedstrategies on surface charge characteristics and associated increases in plant productivity.
文摘Farmers of North-Eastern India grow ginger organically and obtain low yield. Biofertilizer may help in increasing yield and maintaining soil fertility. An investigation made with different biofertilizers showed that seed treatment with biofertilizer increased biomass by 18.3%, enhanced N, P and K removal and improved short-term soil fertility status by increasing N and P balance and reducing negative K balance over control plots. Use of high dose (5.0 kg haL) of Azotobacter (a3) and medium dose (3.75 kg hal) of both Azospirillum (b2) and Phosphotica (c2) increased rhizome biomass by 6.8%-12.5% and shoot biomass by 5.6%-14.3% over other levels. They enhanced N, P and K removal by both rhizome and shoot when compared with other levels. The above biofertilizer treatments improved organic carbon and available N and P status of the soil by increasing N and P balance. The result showed overall strong negative K balance; but biofertilizer treatments greatly reduced the negative K balance in soil as compared to the control plots. Seed treatment with high level of Azotobacter along with medium level of Phosphotica (a3c2) produced the highest biomass yield (7.4 t hal), increased N and P balance and fertility status in spite of hizh N, P and K removal.
文摘Bio-organic fertilizer is a new type of fertilizer which have advantages of both organic manure and fertilizer. This study investigated the effects of bio-organic fertilizer on the growth and yield of cassava and the soil fertility. The study was carried out in the period of 2004-2005 and the material was cassava cultivar FUXUAN01. The bio-organic fertilizers were applied as basic fertilizers on four different levels of 450 kg/hm^2, 600 kg/hm^2, 750 kg/hm^2, 900 kg/hm^2 in this experiment. The growth of stem and leaf, the yield of earthnut and the starch content of tuber root of cassava and the unit weight, the hole percent, the content of organic matters, nitrogen, phosphorus and potassium, microbes, the activity of soil urease and invertase were analyzed during the experiment. The results showed that not only can the bio-organic fertilizer promote the growth of cassava stems and leaves, increase the chlorophyll content and the photosynthesis of leaves, improve the physiological metabolism of cassava, and strengthen physiological function of anti-senility, promote the transformation from photosynthetic organism to tuber root and increase the yield and starch content in the tuber root of cassava, but also decrease the soil unit weight, increase the hole percent of soil, promote microbe activity in the soil, increase the activity of soil urease and invertase, promote the availability of nutrients, increase the content of organic matters, available nitrogen, phosphorus and potassium, and increase the utilization rate of fertilizer. It was an effective way to apply the bio-organic fertilizer to increase the yield and starch content in the tuber root of cassava, improving the physical and chemical characters of soil and increasing the soil fertility.
文摘Environmental, biological, socio-cultural and economic status variation existing in the Central Himalaya have led to the evolution of diverse and unique traditional agroecosystems, crop species and livestock, which facilitate the traditional mountain farming societies to sustain themselves. Indigenous agroecosystems are highly site specific and differ from place to place, as they have evolved along divergent lines. For maintenance of traditional agrodiversity management the farmers of the Central Himalaya have evolved various types of crop rotations in consonance with the varied environmental conditions and agronomic requirements. In irrigated fiat lands two crops are harvested in a year with negligible fallow period but in rainfed conditions if a cropping sequence is presumed to be starting after winter fallow phase then four major cropping seasons can be identified namely first kharif season (first crop season), first rabi season (second crop season), second kharif season (third crop season) and second rabi season (fourth crop season). Highest crop diversity is present in kharif season in comparison to rabi season. Traditionally the fields are left fallow after harvest of the second kharif season crop. Important characteristics of agrodiversity management are the use of bullocks for draughtpower, human energy as labour, crop residues as animal feed and animal waste mixed with forest litter as organic input to restore soil fertility levels. Women provide most of the human labour except for ploughing and threshing grain. The present study deals with assessment of traditional agrodiversity management such as (i) crop diversity, (ii) realized yield under the traditional practices and (iii) assess the differences of realized yields under sole and mixed cropping systems. It indicated that crop rotation is an important feature of the Central Himalayan village ecosystem which helps to continue the diversity of species grown, as are the distribution of crops in the growing period and the management of soil fertility. The cropping diversity existing and the sequences practiced by the traditional farmers seems to have achieved high degree of specialization and thus even when the yield/biomass variations are about 6o%, the farmers continue to practice these sequences as they need to maintain diversity and synergistic relationships of crops in addition to manage the food and labour requirements for crop husbandry. Crop yields are generally higher in irrigated systems than rainfed systems and in sole cropping as compared with mixed cropping. However, gross biological and economic yields are higher in mixed cropping than sole cropping systems.
基金supported by Patuakhali Science and Technology University (PSTU),Bangladesh
文摘Biochar has potentials for soil fertility improvement, climate change mitigation and environmental reclamation, and charred biomass can be deliberately incorporated into soil for long-term carbon stabilization and soil amendment. Many different methods have been used for biochar production ranging from laboratory to industrial scales. However, in countryside of developing countries, biomass is generally used for cooking but not charred. Biochar production techniques at farmer scale have remained poorly developed. We developed and tested biochar production kilns for farmers with a dimension of 50.8 cm × 38.1 cm (height × diameter), using three different setups for optimizing oxygen (02) limitation and syngas circulation: airtight with no syngas circulation (Model I), semi-airtight with external syngas circulation (Model II) and semi-airtight with internal syngas circulation (Model III). A comparative assessment of these biochar production kiln models was made considering biochar pyrolysis time, fuel to biomass ratio, biochar to feedstock ratio and thermogravimetric index (TGI). Among the models, the best quality biochar (TGI ---- 0.15) was obtained from Model I kiln taking the longest time for pyrolysis (12.5 h) and the highest amount of fuel wood (1.22 kg kg-1 biomass). Model III kiln produced comparatively good quality biochar (TGI = 0.11), but with less fuel wood requirement (0.33 kg kg-1 biomass) and shorter pyrolysis time (8.5 h). We also tested Model III kiln in a three times larger size under two situations (steel kiln and pit kiln). The biochar to feedstock ratio (0.38) and quality (TGI =0.14) increased slightly for the larger kilns. Quality of biochar was found to be mainly related to pyrolysis time. The costs for the biochar stove and pit kiln were US$ 65-77, while it was US$ 154 for the large size steel kiln. Model III kiln can potentially be used for both cooking and biochar production at farmer scale.
基金funded by the Linkage,Infrastructure,Equipment and Facilities (LIEF) grant from the Australian Research Council (ARC) (No.LE120100104)supported by the ARC (No.LP120200418),Renewed Carbon Pty Ltd.of Australiathe Department of Agriculture,Australian Government’s Carbon Farming Futures Filling the Research Gap (No.RG134978)
文摘Addition of biochar produced through thermal decomposition of biomass has been seen as a strategy to improve soils and to sequester carbon (C), but wide scale implementation of the technology requires to devise innovative profitable solutions. To develop biochar utilisation with an integrated system approach, an innovative program was implemented in 2012 on a 53-ha farm in Western Australia to determine the costs and benefits of integrating biochar with animal husbandry and improvement of pastures. Biochar was mixed with molasses and fed directly to cows. The dung-biochar mixture was incorporated into the soft profile by dung beetles. We studied the changes in soil properties over 3 years. Biochar extracted from fresh dung and from the soil to a depth of 40 cm was characterised. A preliminary financial analysis of the costs and benefits of this integrated approach was also undertaken. The preliminary investigation results suggested that this strategy was effective in improving soil properties and increasing returns to the farmer. It was also concluded that the biochar adsorbed nutrients from the cow's gut and from the dung. Dung beetles could transport this nutrient-rich biochar into the soil profile. There was little evidence that the recalcitrant component of the biochar was reduced through reactions inside the gut or on/in the soil. Further research is required to quantify the long-term impact of integrating biochar and dung beetles into the rearing of cows.