期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
微生物肥料的发展与土壤生物肥力的维持 被引量:136
1
作者 李俊 姜昕 +1 位作者 李力 沈德龙 《中国土壤与肥料》 CAS CSCD 北大核心 2006年第4期1-5,共5页
综述了我国微生物肥料行业的发展状况、标准体系构建与未来微生物肥料的研究发展趋势。在介绍土壤生物肥力的概念及其内涵基础上,阐述了微生物在土壤生物肥力形成和维系过程中的核心作用,以及微生物肥料在我国农业可持续发展中的不可替... 综述了我国微生物肥料行业的发展状况、标准体系构建与未来微生物肥料的研究发展趋势。在介绍土壤生物肥力的概念及其内涵基础上,阐述了微生物在土壤生物肥力形成和维系过程中的核心作用,以及微生物肥料在我国农业可持续发展中的不可替代地位。 展开更多
关键词 生物肥料 土壤生物肥力 农业可持续发展
下载PDF
不同土地利用方式下的蚯蚓种群特征及其与土壤生物肥力的关系 被引量:23
2
作者 张宁 廖燕 +2 位作者 孙福来 王冲 孙振钧 《土壤学报》 CAS CSCD 北大核心 2012年第2期364-372,共9页
采用样方法对华北平原(河北曲周)盐渍化改造区7种土地利用方式下的蚯蚓种群进行详细调查,并通过培养实验研究了蚯蚓种群特征对若干土壤生物学指标的影响。结果表明:(1)在7种土地利用调查样地中共存在蚯蚓有3个科,5个属,5个种,其中赤子... 采用样方法对华北平原(河北曲周)盐渍化改造区7种土地利用方式下的蚯蚓种群进行详细调查,并通过培养实验研究了蚯蚓种群特征对若干土壤生物学指标的影响。结果表明:(1)在7种土地利用调查样地中共存在蚯蚓有3个科,5个属,5个种,其中赤子爱胜蚓(Eisenia fetida)占调查样地总个体数的60%以上,梯形流蚓(Aporrectodea trapezoides)和赤子爱胜蚓两个种在本地区广泛分布,样点出现频率分别为74%和44%,为该地区的优势种;(2)不同土地利用方式的蚯蚓种群密度及生物量变化趋势是:庭院菜地>直立免耕>清茬免耕>商品菜地>传统玉米地>果园>原貌地。其中庭院菜地蚯蚓种群的平均密度和生物量分别达到272 Ind.m-2和68.04gm-2;(3)蚯蚓种群密度和物种数等种群特征与土壤基础呼吸强度、微生物生物量碳含量成显著正相关(p<0.01),与土壤基础呼吸商成显著负相关(p<0.01);(4)不同土地利用方式下,蚯蚓的种群密度、生物量等种群特征对土壤中微生物群落的影响作用显著。蚯蚓生物量越大、种群越丰富的土壤有机质、氮、磷、钾等有效成分越高,反之则相反。室内培养实验表明,随着蚯蚓个体数量增加土壤原生动物总丰度、微生物生物量碳、氮也存在升高的趋势,与用土壤生物学特性指标及土壤化学特性指标评价的结果基本一致。 展开更多
关键词 蚯蚓种群特征 土壤生物肥力 土壤生物学性质 盐碱地 土地利用方式
下载PDF
蜀南竹海毛竹林土壤生物肥力质量指标与评价 被引量:1
3
作者 刘丽 罗承德 +3 位作者 雷波 马丹 代斌 高强伟 《土壤》 CAS CSCD 北大核心 2015年第3期543-549,共7页
土壤生物肥力处于土壤肥力的中枢和核心地位。以蜀南竹海核心景区毛竹林土壤为研究对象,选择土壤生物因子为评价指标,采用经典统计学和地统计学方法分析因子的空间分布特性以及土壤呼吸的整体水平。在此基础上应用模糊数学与主成分分... 土壤生物肥力处于土壤肥力的中枢和核心地位。以蜀南竹海核心景区毛竹林土壤为研究对象,选择土壤生物因子为评价指标,采用经典统计学和地统计学方法分析因子的空间分布特性以及土壤呼吸的整体水平。在此基础上应用模糊数学与主成分分析法,建立土壤生物肥力指数模型,综合评价该区土壤生物肥力质量。结果表明:研究区土壤各项生物肥力指标属中度到强度变异,变程范围1326~2219m,在其变程内,各指标具有强烈的空间相关性;研究区土壤呼吸速率平均为3.38runol/(m^2·s),林地干扰较严重;在划分的5个生物肥力等级中,三、四两级所占面积最大,达到总面积的65.01%,一级与五级区域所占面积较小,均不足10%,土壤生物肥力质量总体处于中等水平。 展开更多
关键词 地统计学 空间变异 土壤生物肥力质量评价 土壤 土壤生物生物 土壤呼吸
下载PDF
基于主成分和聚类分析的黑土肥力质量评价 被引量:47
4
作者 吴海燕 金荣德 +5 位作者 范作伟 彭畅 高洪军 张秀芝 李强 朱平 《植物营养与肥料学报》 CAS CSCD 北大核心 2018年第2期325-334,共10页
【目的】以吉林省农业科学院(公主岭)国家黑土长期定位试验基地为研究平台,定量评价不同施肥措施对土壤肥力质量的影响,为建立东北黑土区合理施肥模式和土壤肥力质量定量评价体系提供科学依据。【方法】通过主成分和聚类分析,综合评价... 【目的】以吉林省农业科学院(公主岭)国家黑土长期定位试验基地为研究平台,定量评价不同施肥措施对土壤肥力质量的影响,为建立东北黑土区合理施肥模式和土壤肥力质量定量评价体系提供科学依据。【方法】通过主成分和聚类分析,综合评价了长期不同培肥措施的土壤肥力质量差异。以欧氏距离作为衡量不同处理肥力差异的大小,采用最短距离法对各定位施肥处理进行系统聚类。【结果】长期不同施肥处理的玉米产量与土壤酶活性、土壤全量养分、速效养分、有机质、微生物碳和微生物量氮都表现出显著或极显著正相关,与土壤p H值表现出负相关趋势。玉米产量与土壤硝态氮、铵态氮没有明显的相关性。土壤生物肥力与化学肥力呈极显著的正相关关系。土壤肥力质量排序为1.5(NPK+M1)>NPK+M2>NPK+M1>NPK+M1(R)>NPK+S>NPK>CK,其中R表示轮作。不同培肥措施的土壤肥力质量可聚为4类,1.5(NPK+M1)和CK单独聚为一类,分别为土壤肥力质量最好(一等)和最差(四等);NPK+M2、NPK+M1、NPK+M1(R)三个处理聚为一类,土壤肥力质量为二等;NPK+S和NPK聚为一类,土壤肥力质量为三等。【结论】长期有机肥与化肥配施土壤肥力质量明显优于秸秆还田和单施化肥处理,秸秆还田的土壤肥力质量优于化肥单施。因此,应提倡长期有机无机肥配施以提高土壤肥力质量,实现农田的可持续利用。 展开更多
关键词 主成分分析 聚类分析 长期定位施肥 土壤生物肥力 土壤化学肥力
下载PDF
蚯蚓对土壤微生物及生物肥力的影响研究进展 被引量:46
5
作者 曹佳 王冲 +2 位作者 皇彦 纪丁戈 楼屹 《应用生态学报》 CAS CSCD 北大核心 2015年第5期1579-1586,共8页
蚯蚓被称为"生态系统工程师",可以通过改善微生境(排粪、作穴、搅动)、提高有机物的表面积、直接取食、携带传播微生物等方式影响土壤微生物结构、组成和功能.蚯蚓活动形成的大孔隙(洞穴)、中、微空隙(排泄物)可以增加土壤孔... 蚯蚓被称为"生态系统工程师",可以通过改善微生境(排粪、作穴、搅动)、提高有机物的表面积、直接取食、携带传播微生物等方式影响土壤微生物结构、组成和功能.蚯蚓活动形成的大孔隙(洞穴)、中、微空隙(排泄物)可以增加土壤孔隙度和通气性,有助于改善微生物微环境,促进其生长和繁殖.蚯蚓还通过取食、粉碎、混合等活动使复杂有机质转变为微生物可利用的形式,增加土壤微生物与有机质的接触面积,促进微生物对有机质的矿化作用,对土壤中碳、氮、磷养分循环等关键过程产生影响,最终促进土壤养分循环和周转速率,提高土壤生物肥力. 展开更多
关键词 生态系统工程师 土壤生物 养分循环 土壤生物肥力
原文传递
Effects of Cadmium, Lead, and Zinc on Size of MicrobialBiomass in Red Soil 被引量:40
6
作者 K.S.KHAN XIEZHENGMIAO 《Pedosphere》 SCIE CAS CSCD 1998年第1期27-32,共6页
A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five d... A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five different levels that were: Cd at 5, 15, 30, 60 and 100 μg g-1; Pb at 100, 200, 300, 450 and 600 μg g-1 and Zn at 50, 100, 150, 200 and 250 μg g-1 soil. In comparison to uncontaminated soil, the microbial biomass carbon and biomass nitrogen decreased sharply in soils contaminated with Cd, Ph and Zn. A more considerable increase in the microbial biomass C: N ratio was observed in the metal contaminated soils than the non-treated control. Among the tested metals, Cd displayed the greatest biocidal effect followed by Zn and Pb, showing their relative toxicity in the order of Cd > Zn > Pb. 展开更多
关键词 CADMIUM LEAD microbial biomass red soil ZINC
下载PDF
Chemical and Microbiological Parameters of Paddy Soil Quality as Affected by Different Nutrient and Water Regimes 被引量:21
7
作者 YANGChang-Ming YANGLin-Zhang YANTing-Mei 《Pedosphere》 SCIE CAS CSCD 2005年第3期369-378,共10页
A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient r... A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient regimes, a control, chemical fertilizers only (CF), chemical fertilizers with swine manure (SM), and chemical fertilizers with wheat straw (WS), and two soil moisture regimes, continuous waterlogging (CWL) and alternate wetting and drying (AWD), were investigated. With SM and WS total organic carbon and total nitrogen in the paddy soil were significantly higher (P < 0.05) than those with CF. A similar effect for organic amendments was observed in the soil light fraction organic C (LFOC), water-soluble carbohydrates (WSC), and water-soluble organic C (WSOC). CWL, in particular when swine manure was incorporated into the paddy soil, markedly decreased soil redox potential (Eh) and increased total active reducing substances (ARS). Meanwhile, as compared to CF, SM and WS significantly (P < 0.05) increased soil microbial biomass C (MBC) and mineralizable carbon, with differences in AWD being higher than CWL. In addition, SM and WS treatments significantly (P < 0.05) improved rice above-ground biomass and grain yield, with AWD being greater than CWL. Thus, for ecologically sustainable agricultural management of paddy soils, long-term waterlogging should be avoided when organic manure was incorporated into paddy soil. 展开更多
关键词 biological index of fertility nutrient regimes paddy soil quality water regimes
下载PDF
Soil Fertility in Agroforestry System of Chinese Fir and Villous Amomum in Subtropical China 被引量:14
8
作者 YANG YUSHENG, CHEN GUANGSHUI and YU XINTUO Fujian Agriculture and Forestry University, Nanping 353001 (China) 《Pedosphere》 SCIE CAS CSCD 2001年第4期341-348,共8页
A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey... A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey on soil fertility was carried out 10 years after its establishment. Compared with the control (non-interplanting), the properties of soil humus in agroforestry system were ameliorated, with a higher level of humification and resynthesis of organic detritus. The soil microbial population and enzymatic activities were both higher under the influence of villous amomum. Both the nutrient supplying and nutrient conserving capacities of the soil were improved. This agroforestry system exhibited an advantage of improved soil fertility as well as an accelerated growth of Chinese fir, it was, therefore, a sustainable management system suited for Chinese fir in South China. 展开更多
关键词 AGROFORESTRY Chinese fir soil biological activity soil humus soil structure
下载PDF
Dynamics of Microbial Biomass in a Rainfed Soil Under Wheat Cultivation 被引量:7
9
作者 M.AKMAL K.S.KHAN XUJian-Ming 《Pedosphere》 SCIE CAS CSCD 2004年第1期53-62,共10页
A pot experiment was conducted to determine the dynamics of soil microbial biomass in a rainfed soil under wheat cultivation at the University of Arid Agriculture, Rawalpindi, Pakistan. The treatments applied were: 1)... A pot experiment was conducted to determine the dynamics of soil microbial biomass in a rainfed soil under wheat cultivation at the University of Arid Agriculture, Rawalpindi, Pakistan. The treatments applied were: 1) a control (CK), 2) NPK (0.44-0.26-0.18 g pot-1), 3) farmyard manure (FYM, 110 g pot-1), 4)poultry manure (PM, 110 g pot-1), 5) FYM (110 g pot-1) + NPK (0.44-0.26-0.18 g pot-1), 6) poultry manure (PM, 110 g pot-1) + NPK (0.44-0.26-0.18 g pot-1), 7) FYM (110 g pot-1) + NPK(S) (0.44-0.26-0.18 g pot-1, one half of the NPK at sowing and the other half one month after sowing), and 8) PM (110 g pot-1) + NPK(S) (0.44-0.26-0.18 g pot-1, one half of the NPK applied at sowing and the other half one month after sowing). The experiment was laid out using a completely randomized design with three replications. Microbial biomass C, N and P contents increased continuously from the beginning of the experiment up to the three-leaf stage. A slight decline was observed at the tillering stage in all treatments except with the organic manures + NPK(S) treatments. After tillering there was an increase in all treatments to the recorded maximum point at the full heading stage in all treatments except with the organic manures + NPK(S) treatments. In the FYM + NPK(S) and PM + NPK(S) treatments; however, there was a continuous increase in microbial biomass up to the heading stage. At the harvesting stage a sharp decline was noted in all treatments. The C:N ratio of microbial biomass in tested soil ranged from 7.8 to 11.3, while C:P ratio of microbial biomass in the tested soil ranged from 22.6 to 35.1 throughout all growth stages of the wheat crop. 展开更多
关键词 DYNAMICS inorganic fertilizers organic manures soil microbial biomass WHEAT
下载PDF
Effects of improved fallow with Sesbania sesban on maize productivity and Striga hermonthica infestation in Western Kenya 被引量:1
10
作者 Hans Sjogren Keith D Shepherd Anders Karlsson 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第3期379-386,400,共9页
Striga hermonthica is a major constraint to smallholder sub-sistence agriculture production in the sub-Saharan African region. Low soil fertility and overall environmental degradation has contributed to the build-up o... Striga hermonthica is a major constraint to smallholder sub-sistence agriculture production in the sub-Saharan African region. Low soil fertility and overall environmental degradation has contributed to the build-up of the parasitic weed infestation. Improved cropping systems have to be introduced to address the interrelated problems of S. her-monthica and soil fertility decline. Thus, the effects of improved fallow with leguminous shrub Sesbania sesban on maize yields and levels of S. hermonthica infestation on farm land in the bimodal highlands of western Kenya were investigated. The experimental treatments were arranged in a phased entry, and randomized complete block scheme were six months Sesbania fallow, 18 months Sesbania fallow, six months natural fallow consisting of regrowth of natural vegetation without cultivation, 18 months natural fallow, continuous maize cropping without fertilizer application, and continuous maize cropping with P and N fertilization. Results show that Sesbania fallows significantly (p0.05) increase maize yield relative to continuous unfertilized maize. S. hermonthica plant populations decrease in continuous maize between the first season (mean = 428 000 ± 63 000 ha-1) and second season (mean=51 000 ± 15 000 ha-1), presumably in response to good weed management. S. hermonthica seed populations in the soil decrease throughout the duration of the experi-ment in the continuous maize treatments. Short-duration Sesbania fal-lows can provide modest yield improvements relative to continuous unfertilized maize, but short-duration weedy fallows are ineffective. Continuous maize cultivation with good weed control may provide more effective S. hermonthica control than fallowing. 展开更多
关键词 AGROFORESTRY crop yield improved fallow residual effect root parasite soil fertility replenishment
下载PDF
Quantification and Remediation of Soil Chemical Degradation in Tropical Australia,China and Thailand 被引量:9
11
作者 A.D.NoBLE P.MOODY 《Pedosphere》 SCIE CAS CSCD 2003年第1期31-39,共9页
Soil and land degradation in the tropics can be identified and described interms of physical, chemical, and biological changes from its pristine state brought about by naturaland anthropogenic influences. A characteri... Soil and land degradation in the tropics can be identified and described interms of physical, chemical, and biological changes from its pristine state brought about by naturaland anthropogenic influences. A characteristic of these ecosystems is their capacity to recyclenutrients through soil organic matter (SOM). Following disturbance through changed land management,SOM is rapidly mineralized and there is a corresponding decline in fertility and the variable chargecomponent of the cation exchange capacity. As these ecosystems are strongly dependent on SOM fortheir functionality, changed land use can have irreversible impacts on the productivity of thesesystems. The paper focuses on quantifying chemical degradation through 'benchmarking' using datafrom paired sites in tropical China and Thailand using surface charge fingerprinting. Using valuestaken from the fingerprint of an undisturbed soil, an index of chemical degradation from 'ideality'was calculated. Various management strategies that attempt to reverse degradative trends or improvepoor quality soils in their natural condition are discussed, such as the addition of natural claysand silicated materials. Results are present to show the effect of each of the aforementionedstrategies on surface charge characteristics and associated increases in plant productivity. 展开更多
关键词 DEGRADATION land use REMEDIATION SOIL
下载PDF
Effect of Biofertilizer on Biomass Productivity, Nutrient Balance and Soil Fertility in Rainfed Organic Ginger Production System
12
作者 Nongmaithem Jyotsna Mainak Ghosh +2 位作者 Dulal Chandra Ghosh, Wahengbam Ingo Meitei Jagadish Timsina 《Journal of Agricultural Science and Technology(A)》 2013年第1期10-19,共10页
Farmers of North-Eastern India grow ginger organically and obtain low yield. Biofertilizer may help in increasing yield and maintaining soil fertility. An investigation made with different biofertilizers showed that s... Farmers of North-Eastern India grow ginger organically and obtain low yield. Biofertilizer may help in increasing yield and maintaining soil fertility. An investigation made with different biofertilizers showed that seed treatment with biofertilizer increased biomass by 18.3%, enhanced N, P and K removal and improved short-term soil fertility status by increasing N and P balance and reducing negative K balance over control plots. Use of high dose (5.0 kg haL) of Azotobacter (a3) and medium dose (3.75 kg hal) of both Azospirillum (b2) and Phosphotica (c2) increased rhizome biomass by 6.8%-12.5% and shoot biomass by 5.6%-14.3% over other levels. They enhanced N, P and K removal by both rhizome and shoot when compared with other levels. The above biofertilizer treatments improved organic carbon and available N and P status of the soil by increasing N and P balance. The result showed overall strong negative K balance; but biofertilizer treatments greatly reduced the negative K balance in soil as compared to the control plots. Seed treatment with high level of Azotobacter along with medium level of Phosphotica (a3c2) produced the highest biomass yield (7.4 t hal), increased N and P balance and fertility status in spite of hizh N, P and K removal. 展开更多
关键词 BIOFERTILIZER ginger productivity nutrient balance soil fertility.
下载PDF
Studies on the effects of bio-organic fertilizer on the physical and chemical characteristics of soil and the yield of cassava*
13
作者 LUO Xing-lu CEN Zhong-yong XIE He-xia PAN Ying-hua LIAO Cheng SHAO Zhi-fang CHEN Hui-lin 《Journal of Life Sciences》 2008年第1期27-36,共10页
Bio-organic fertilizer is a new type of fertilizer which have advantages of both organic manure and fertilizer. This study investigated the effects of bio-organic fertilizer on the growth and yield of cassava and the ... Bio-organic fertilizer is a new type of fertilizer which have advantages of both organic manure and fertilizer. This study investigated the effects of bio-organic fertilizer on the growth and yield of cassava and the soil fertility. The study was carried out in the period of 2004-2005 and the material was cassava cultivar FUXUAN01. The bio-organic fertilizers were applied as basic fertilizers on four different levels of 450 kg/hm^2, 600 kg/hm^2, 750 kg/hm^2, 900 kg/hm^2 in this experiment. The growth of stem and leaf, the yield of earthnut and the starch content of tuber root of cassava and the unit weight, the hole percent, the content of organic matters, nitrogen, phosphorus and potassium, microbes, the activity of soil urease and invertase were analyzed during the experiment. The results showed that not only can the bio-organic fertilizer promote the growth of cassava stems and leaves, increase the chlorophyll content and the photosynthesis of leaves, improve the physiological metabolism of cassava, and strengthen physiological function of anti-senility, promote the transformation from photosynthetic organism to tuber root and increase the yield and starch content in the tuber root of cassava, but also decrease the soil unit weight, increase the hole percent of soil, promote microbe activity in the soil, increase the activity of soil urease and invertase, promote the availability of nutrients, increase the content of organic matters, available nitrogen, phosphorus and potassium, and increase the utilization rate of fertilizer. It was an effective way to apply the bio-organic fertilizer to increase the yield and starch content in the tuber root of cassava, improving the physical and chemical characters of soil and increasing the soil fertility. 展开更多
关键词 bio-organic fenilizer -cassava YIELD physical andchemical characteristics of soil
下载PDF
Traditional Agrodiversity Management:A Case Study of Central Himalayan Village Ecosystem
14
作者 Abhishek CHANDRA P.Pardha SARADHI +2 位作者 R.K.MAIKHURI K.G.SAXENA K.S.RAO 《Journal of Mountain Science》 SCIE CSCD 2011年第1期62-74,共13页
Environmental, biological, socio-cultural and economic status variation existing in the Central Himalaya have led to the evolution of diverse and unique traditional agroecosystems, crop species and livestock, which fa... Environmental, biological, socio-cultural and economic status variation existing in the Central Himalaya have led to the evolution of diverse and unique traditional agroecosystems, crop species and livestock, which facilitate the traditional mountain farming societies to sustain themselves. Indigenous agroecosystems are highly site specific and differ from place to place, as they have evolved along divergent lines. For maintenance of traditional agrodiversity management the farmers of the Central Himalaya have evolved various types of crop rotations in consonance with the varied environmental conditions and agronomic requirements. In irrigated fiat lands two crops are harvested in a year with negligible fallow period but in rainfed conditions if a cropping sequence is presumed to be starting after winter fallow phase then four major cropping seasons can be identified namely first kharif season (first crop season), first rabi season (second crop season), second kharif season (third crop season) and second rabi season (fourth crop season). Highest crop diversity is present in kharif season in comparison to rabi season. Traditionally the fields are left fallow after harvest of the second kharif season crop. Important characteristics of agrodiversity management are the use of bullocks for draughtpower, human energy as labour, crop residues as animal feed and animal waste mixed with forest litter as organic input to restore soil fertility levels. Women provide most of the human labour except for ploughing and threshing grain. The present study deals with assessment of traditional agrodiversity management such as (i) crop diversity, (ii) realized yield under the traditional practices and (iii) assess the differences of realized yields under sole and mixed cropping systems. It indicated that crop rotation is an important feature of the Central Himalayan village ecosystem which helps to continue the diversity of species grown, as are the distribution of crops in the growing period and the management of soil fertility. The cropping diversity existing and the sequences practiced by the traditional farmers seems to have achieved high degree of specialization and thus even when the yield/biomass variations are about 6o%, the farmers continue to practice these sequences as they need to maintain diversity and synergistic relationships of crops in addition to manage the food and labour requirements for crop husbandry. Crop yields are generally higher in irrigated systems than rainfed systems and in sole cropping as compared with mixed cropping. However, gross biological and economic yields are higher in mixed cropping than sole cropping systems. 展开更多
关键词 Traditional agricultural practices HIMALAYAS RAINFED Management
下载PDF
Production of Biochar for Soil Application:A Comparative Study of Three Kiln Models 被引量:2
15
作者 Shamim MIA Nijam UDDIN +3 位作者 Shaikh Abdullah Al MAMUN HOSSAIN Ruhul AMIN Fatima Z.METE Tjisse HIEMSTRA 《Pedosphere》 SCIE CAS CSCD 2015年第5期696-702,共7页
Biochar has potentials for soil fertility improvement, climate change mitigation and environmental reclamation, and charred biomass can be deliberately incorporated into soil for long-term carbon stabilization and soi... Biochar has potentials for soil fertility improvement, climate change mitigation and environmental reclamation, and charred biomass can be deliberately incorporated into soil for long-term carbon stabilization and soil amendment. Many different methods have been used for biochar production ranging from laboratory to industrial scales. However, in countryside of developing countries, biomass is generally used for cooking but not charred. Biochar production techniques at farmer scale have remained poorly developed. We developed and tested biochar production kilns for farmers with a dimension of 50.8 cm × 38.1 cm (height × diameter), using three different setups for optimizing oxygen (02) limitation and syngas circulation: airtight with no syngas circulation (Model I), semi-airtight with external syngas circulation (Model II) and semi-airtight with internal syngas circulation (Model III). A comparative assessment of these biochar production kiln models was made considering biochar pyrolysis time, fuel to biomass ratio, biochar to feedstock ratio and thermogravimetric index (TGI). Among the models, the best quality biochar (TGI ---- 0.15) was obtained from Model I kiln taking the longest time for pyrolysis (12.5 h) and the highest amount of fuel wood (1.22 kg kg-1 biomass). Model III kiln produced comparatively good quality biochar (TGI = 0.11), but with less fuel wood requirement (0.33 kg kg-1 biomass) and shorter pyrolysis time (8.5 h). We also tested Model III kiln in a three times larger size under two situations (steel kiln and pit kiln). The biochar to feedstock ratio (0.38) and quality (TGI =0.14) increased slightly for the larger kilns. Quality of biochar was found to be mainly related to pyrolysis time. The costs for the biochar stove and pit kiln were US$ 65-77, while it was US$ 154 for the large size steel kiln. Model III kiln can potentially be used for both cooking and biochar production at farmer scale. 展开更多
关键词 biomass farmer scale FEEDSTOCK fuel wood requirement O2 limitation pyrolysis time syngas circulation thermogravi- metric index
原文传递
Feeding Biochar to Cows:An Innovative Solution for Improving Soil Fertility and Farm Productivity 被引量:3
16
作者 Stephen JOSEPH Doug POW +17 位作者 Kathy DAWSON David R.G.MITCHELL Aditya RAWAL James HOOK Sarasadat TAHERYMOOSAVI Lukas VAN ZWIETEN Joshua RUST Scott DONNE Paul MUNROE Ben PACE Ellen GRABER Torsten THOMAS Shaun NIELSEN Jun YE Yun LIN PAN Genxing LI Lianqing Zakaria M.SOLAIMAN 《Pedosphere》 SCIE CAS CSCD 2015年第5期666-679,共14页
Addition of biochar produced through thermal decomposition of biomass has been seen as a strategy to improve soils and to sequester carbon (C), but wide scale implementation of the technology requires to devise inno... Addition of biochar produced through thermal decomposition of biomass has been seen as a strategy to improve soils and to sequester carbon (C), but wide scale implementation of the technology requires to devise innovative profitable solutions. To develop biochar utilisation with an integrated system approach, an innovative program was implemented in 2012 on a 53-ha farm in Western Australia to determine the costs and benefits of integrating biochar with animal husbandry and improvement of pastures. Biochar was mixed with molasses and fed directly to cows. The dung-biochar mixture was incorporated into the soft profile by dung beetles. We studied the changes in soil properties over 3 years. Biochar extracted from fresh dung and from the soil to a depth of 40 cm was characterised. A preliminary financial analysis of the costs and benefits of this integrated approach was also undertaken. The preliminary investigation results suggested that this strategy was effective in improving soil properties and increasing returns to the farmer. It was also concluded that the biochar adsorbed nutrients from the cow's gut and from the dung. Dung beetles could transport this nutrient-rich biochar into the soil profile. There was little evidence that the recalcitrant component of the biochar was reduced through reactions inside the gut or on/in the soil. Further research is required to quantify the long-term impact of integrating biochar and dung beetles into the rearing of cows. 展开更多
关键词 animal husbandry BIOCHAR C sequestration dung beetles financial benefit PASTURE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部