The electrical conductivity (EC) of 1:5 soil-water extract (EC1:5) was studied utilizing path coefficient analysis. The study focused on revealing the main chemical factors contributing to EC of soil extracts an...The electrical conductivity (EC) of 1:5 soil-water extract (EC1:5) was studied utilizing path coefficient analysis. The study focused on revealing the main chemical factors contributing to EC of soil extracts and their relative importance. Results showed that the most important factors influencing the EC1:5 of coastal salt-affected soils were the concentration of salt in 1:5 soil-water extract (So), Cl^-, and the sodium adsorption ratio (SAR), while effects of pH, CO3^2-, HCO3^, soluble sodium percentage (SSP), and sodium dianion ratio (SDR) were very weak. Though the direct path coefficients between EC1:5 and SO4^2- , Ca^2+, Mg^2+, K^+, or Na^+ were not high, influence of other chemical factors caused the coefficients to increase, making the summation of their direct and indirect path coefficients relatively high. Evidences showed that multiple regression relations between EC1:5 and most of the primary factors (So, Cl^-, and SAR) had sound reliability and very good accuracy.展开更多
The point of zero salt effect (PZSE) is the soil pH value at which the magnitude of the variable surface charges is not changed due to variations in the ionic concentration of the soil solution. This property influe...The point of zero salt effect (PZSE) is the soil pH value at which the magnitude of the variable surface charges is not changed due to variations in the ionic concentration of the soil solution. This property influences not only electrochemical phenomena occurring at the solid-solution interface but also the flocculation degree of the soil particles. In this study we investigated the relationships between the clay mineralogy and the PZSE values of representative soils of the Sāo Paulo State, Brazil. The results confirmed the usefulness of the difference between the soil pH values measured in 1 mol L^-1 KCl (pHKCl) and in water (pHH2O) (2 pHKCl-pHH2O) for estimating the PZSE of tropical soils, except for the ones rich in exchangeable Al; furthermore, the ApH index (pHKC1 - pHH2O) was highly correlated with the difference between the PZSE and pHH2O values, reiterating the △pH utility for estimating both the signal and the magnitude of the net surface charge of tropical soils. Finally, correlation and multiple regression analyses showed that the PZSE value of weathered non-allophanic tropical soils tends to increase and to equal the soil pH due to the weathering-induced kaolinite destabilization and concomitant Fe- and Al-oxide accumulation.展开更多
The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron ...The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron oxides ( Feo ) from the soils with sodium dithionite and acid ammonium oxalate solution respectively. ( 2 ) Add 2% glucose ( on the basis of air-dry soil weight ) to soils and incubate under submerged condition to activate iron oxides, and then the mixtures are dehydrated and air-dried to age iron oxides. ( 3 ) Precipitate various crystalline forms of iron oxides onto kaolinite. The results showed that free iron oxides ( Fed ) were the chief carrier of variable positive charges. Of which crystalline iron oxides ( Fed-Feo ) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges, and did little influence on negative charges. Whereas the amorphous iron oxides ( Feo ) , which presented mainly as a coating with a large specific surface area, not only had positive charges, but also blocked the negative charge sites in soils. Submerged incubation activated iron oxides in the soils, and increased the amount of amorphous iron oxides and the degree of activation of iron oxide, which resulted in the increase of positive and negative charges of soils. Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide, and also led to the decrease of positive and negative charges. Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges. Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges. Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.展开更多
Some electrochemical properties,such as PH,Eh,and voltammetric behavior,of the decomposition products of rice straw and the in eractions of these products with soils were studied.The PH,Eh,and amounts of organic reduc...Some electrochemical properties,such as PH,Eh,and voltammetric behavior,of the decomposition products of rice straw and the in eractions of these products with soils were studied.The PH,Eh,and amounts of organic reducing substances changed markedly during the 60-day anaerobic decomposition.pH decreased sharply to pH 5 on the tenth day and then increased gradually to 7 on the 45th day.The amouats of organic reducing substances increased almost synchronously with the fall of redox potential during the first 15 days.The differential pulse voltammetric(dpv) behavior changed not only in the peak current but also in the peak potential.The fractions with apparent molecular weights lower than 200 dations appeared to be active in dpv behavior.The electric charge of organic reducing substances was closely related to the decomposition stage.The 6th day of incubation was the crucial time before and after which the major part of the components was negatively charged and positively charged, respectively.The group with a low apparent molecular weight and a negative charge was the main components responsible for the lower anodic peak potentials.They were oxidized first during the interactions of the organic reducing substances with soils.展开更多
Neutralization of alkaline properties of bauxite residue(BR)by using organic acid and gypsum additions may effectively improve electrochemical properties and alleviate physicochemical barriers to ecological rehabilita...Neutralization of alkaline properties of bauxite residue(BR)by using organic acid and gypsum additions may effectively improve electrochemical properties and alleviate physicochemical barriers to ecological rehabilitation.Mineral acids,citric acid and hybrid acid–gypsum additions were compared for their potential to transform and improve zeta potential,isoelectric point(IEP),surface protonation and active alkaline-OH groups,which are critical factors for further improvement of physicochemical and biological properties later.Isoelectric points of untransformed bauxite residue and six transformed derivatives were determined by using electroacoustic methods.Electrochemical characteristics were significantly improved by the amendments used,resulting in reduced IEP and-OH groups and decreased surface protonation for transformed residues.XRD results revealed that the primary alkaline minerals of cancrinite,calcite and grossular were transformed by the treatments.The treatments of citric acid and gypsum promoted the dissolution of cancrinite.From the SEM examination,citric acid and gypsum treatments contributed to the reduction in IEP and redistribution of-OH groups on particle surfaces.The collective evidence suggested that citric acid and gypsum amendments may be used firstly to rapidly amend bauxite residues for alleviating the caustic conditions prior to the consideration of soil formation in bauxite residue.展开更多
基金Project supported by the National Basic Research Program of China (No. 2005CB121108)the National Natural Science Foundation of China (No. 40371058)the National High Technology Research and Development Program of China (863 Program) (No. 2002AA2Z4061).
文摘The electrical conductivity (EC) of 1:5 soil-water extract (EC1:5) was studied utilizing path coefficient analysis. The study focused on revealing the main chemical factors contributing to EC of soil extracts and their relative importance. Results showed that the most important factors influencing the EC1:5 of coastal salt-affected soils were the concentration of salt in 1:5 soil-water extract (So), Cl^-, and the sodium adsorption ratio (SAR), while effects of pH, CO3^2-, HCO3^, soluble sodium percentage (SSP), and sodium dianion ratio (SDR) were very weak. Though the direct path coefficients between EC1:5 and SO4^2- , Ca^2+, Mg^2+, K^+, or Na^+ were not high, influence of other chemical factors caused the coefficients to increase, making the summation of their direct and indirect path coefficients relatively high. Evidences showed that multiple regression relations between EC1:5 and most of the primary factors (So, Cl^-, and SAR) had sound reliability and very good accuracy.
基金the State of So Paulo Research Foundation-FAPESP, Brazil (No. 98/01502-8).
文摘The point of zero salt effect (PZSE) is the soil pH value at which the magnitude of the variable surface charges is not changed due to variations in the ionic concentration of the soil solution. This property influences not only electrochemical phenomena occurring at the solid-solution interface but also the flocculation degree of the soil particles. In this study we investigated the relationships between the clay mineralogy and the PZSE values of representative soils of the Sāo Paulo State, Brazil. The results confirmed the usefulness of the difference between the soil pH values measured in 1 mol L^-1 KCl (pHKCl) and in water (pHH2O) (2 pHKCl-pHH2O) for estimating the PZSE of tropical soils, except for the ones rich in exchangeable Al; furthermore, the ApH index (pHKC1 - pHH2O) was highly correlated with the difference between the PZSE and pHH2O values, reiterating the △pH utility for estimating both the signal and the magnitude of the net surface charge of tropical soils. Finally, correlation and multiple regression analyses showed that the PZSE value of weathered non-allophanic tropical soils tends to increase and to equal the soil pH due to the weathering-induced kaolinite destabilization and concomitant Fe- and Al-oxide accumulation.
文摘The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron oxides ( Feo ) from the soils with sodium dithionite and acid ammonium oxalate solution respectively. ( 2 ) Add 2% glucose ( on the basis of air-dry soil weight ) to soils and incubate under submerged condition to activate iron oxides, and then the mixtures are dehydrated and air-dried to age iron oxides. ( 3 ) Precipitate various crystalline forms of iron oxides onto kaolinite. The results showed that free iron oxides ( Fed ) were the chief carrier of variable positive charges. Of which crystalline iron oxides ( Fed-Feo ) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges, and did little influence on negative charges. Whereas the amorphous iron oxides ( Feo ) , which presented mainly as a coating with a large specific surface area, not only had positive charges, but also blocked the negative charge sites in soils. Submerged incubation activated iron oxides in the soils, and increased the amount of amorphous iron oxides and the degree of activation of iron oxide, which resulted in the increase of positive and negative charges of soils. Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide, and also led to the decrease of positive and negative charges. Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges. Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges. Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.
文摘Some electrochemical properties,such as PH,Eh,and voltammetric behavior,of the decomposition products of rice straw and the in eractions of these products with soils were studied.The PH,Eh,and amounts of organic reducing substances changed markedly during the 60-day anaerobic decomposition.pH decreased sharply to pH 5 on the tenth day and then increased gradually to 7 on the 45th day.The amouats of organic reducing substances increased almost synchronously with the fall of redox potential during the first 15 days.The differential pulse voltammetric(dpv) behavior changed not only in the peak current but also in the peak potential.The fractions with apparent molecular weights lower than 200 dations appeared to be active in dpv behavior.The electric charge of organic reducing substances was closely related to the decomposition stage.The 6th day of incubation was the crucial time before and after which the major part of the components was negatively charged and positively charged, respectively.The group with a low apparent molecular weight and a negative charge was the main components responsible for the lower anodic peak potentials.They were oxidized first during the interactions of the organic reducing substances with soils.
基金Projects(41877511,41842020)supported by the National Natural Science Foundation of China
文摘Neutralization of alkaline properties of bauxite residue(BR)by using organic acid and gypsum additions may effectively improve electrochemical properties and alleviate physicochemical barriers to ecological rehabilitation.Mineral acids,citric acid and hybrid acid–gypsum additions were compared for their potential to transform and improve zeta potential,isoelectric point(IEP),surface protonation and active alkaline-OH groups,which are critical factors for further improvement of physicochemical and biological properties later.Isoelectric points of untransformed bauxite residue and six transformed derivatives were determined by using electroacoustic methods.Electrochemical characteristics were significantly improved by the amendments used,resulting in reduced IEP and-OH groups and decreased surface protonation for transformed residues.XRD results revealed that the primary alkaline minerals of cancrinite,calcite and grossular were transformed by the treatments.The treatments of citric acid and gypsum promoted the dissolution of cancrinite.From the SEM examination,citric acid and gypsum treatments contributed to the reduction in IEP and redistribution of-OH groups on particle surfaces.The collective evidence suggested that citric acid and gypsum amendments may be used firstly to rapidly amend bauxite residues for alleviating the caustic conditions prior to the consideration of soil formation in bauxite residue.