[Objective] The aim was to study on effects of inorganic sodium salt in soil on concentration of zinc ion in different patterns. [Method] Tessier sequential extraction was used to study on effects of inorganic sodium ...[Objective] The aim was to study on effects of inorganic sodium salt in soil on concentration of zinc ion in different patterns. [Method] Tessier sequential extraction was used to study on effects of inorganic sodium salts (in different species and different concentrations) on concentration of zinc ion in different patterns. [Result] Different inorganic sodium salts had different effects on zinc form. Content of ex- changeable Zn would reduce if Na2CO3 or Na2SO4 was added and the content would increase if NaCI was added. Content of carbonate zinc, which was significantly influ- enced by Na2SO4, would increase if NaCI or Na2SO4 was added, and would decrease if Na2CO3 was added. For Zn bound to Fe-Mn oxides and organic matters, and residual Zn, the contents would decrease if NaCI or Na2SO4 was added and the decrease showed much more significantly if high concentration sodium salts were added. In addition, content of Zn bound to Fe-Mn oxides decreased if Na2CO3 was added. If low concentration Na2CO3 was added, Zn bound to organic matters and residual would increase in content but would lower if high concentration one was added. [Conclusion] The research provided references for measurement of heavy metal ion content in soil in different places.展开更多
SO 4 2- and Zn 2+ or Cd 2+ were added to three variable charge soils in different sequences. In one sequence sulfate was added first, and in the other, Zn 2+ or Cd 2+ ...SO 4 2- and Zn 2+ or Cd 2+ were added to three variable charge soils in different sequences. In one sequence sulfate was added first, and in the other, Zn 2+ or Cd 2+ first. The addition of sulfate to the system invariably caused an increase in adsorption of the heavy metal added, with the effect more remarkable when the soil reacted with the sulfate prior to the metal. The shift in pH 50 for both Zn and Cd adsorption was also comparatively larger in the first sequence of reactions. It was suggested that the increase in negative charge density and the resultant negative potential of the soil were the primary cause of the pronounced effect of sulfate on adsorption of Zn or Cd, and the formation of the ternary surface complex S SO 4 M might also play a role in the effect.展开更多
A self-made constant pH automated titration instrument was used to study thekinetics of hydroxyl release during selenite reacting with variable charge soils. The rate ofhydroxyl release was very rapid at the first sev...A self-made constant pH automated titration instrument was used to study thekinetics of hydroxyl release during selenite reacting with variable charge soils. The rate ofhydroxyl release was very rapid at the first several minutes, then gradually slowed down, and atlast did not change any more. The experimental data was well fitted by the Langmuir kineticequation, arid with increasing selenite concentration or decreasing solution pH, the reaction lastedlonger, the maximum of hydroxyl release (x_m) increased, and the binding constant (k) decreased.The time of hydroxyl release with Xuwen latosol was much longer than that with Jinxian red soil.展开更多
The effects of sorbed phosphate on the kinetics of Cu ̄2+ secondary adsorption on three major types ofsoils in southern and Central China were studied using the batch method and flow (or miscible displacement)techniqu...The effects of sorbed phosphate on the kinetics of Cu ̄2+ secondary adsorption on three major types ofsoils in southern and Central China were studied using the batch method and flow (or miscible displacement)techniques. Both of the methods showed that diffusions were the ratedetermining steps in the Cu ̄2+ adsorp-tion by the soils. By the flow method, the course of Cu ̄2+ adsorption kinetics consisted of two steps-sn initialrapid process and a later slow process of Cu ̄2+ adsorption; while by the batch method, the 90% of Cu ̄2+adsorption reaction was found to finish within first 1 minute. The results obtained using the flow method alsoindicated that for red soil and yellow-brown soil, Cu ̄2+ adsorptions during the initial reaction periods wererestrained when the soils sorbed phosphate, whereas the adsorption reactions were stimulated at the finaltime. For grey Chao soil, sorbed phosphate retarded the Cu ̄2+ adsorption in the whole reaction period. Theresults obtained using the batch method and flow techniques all implied that the different effects of sorbedphosphate would be attributed to its effects on Cu ̄2+ ion diffusion in soil solution.展开更多
An exploratory study was conducted in the coastal plantation (12-and 17-year-old Sonneratia apetala) of Char Alim and Char Piya and on their adjacent barren lands at Char Rehania and Char Nurul Islam in Hatiya of Noak...An exploratory study was conducted in the coastal plantation (12-and 17-year-old Sonneratia apetala) of Char Alim and Char Piya and on their adjacent barren lands at Char Rehania and Char Nurul Islam in Hatiya of Noakhali district, in Bangladesh to determine afforestation effects on soil properties. At soil depths of 0-10, 10-30 and 30-40 cm across three different land strips viz. inland, middle and sea side in 12-and 17-year-old keora (Sonneratia apetala) plantations, soil moisture, particle density, organic matter and C, total N, pH, available P, K, Na, Ca and Mg were significantly (p≤0.05, p≤0.01, p≤0.001) higher, and soil salinity significantly (p≤0.001) lower than that in their adjacent barren lands. Soil moisture, particle density, organic matter and C, total N, pH, soil salinity, available P, K, Na, Ca and Mg of surface soil in Char Alim plantation at inland were 31.09%, 2.24 g·cm-3, 2.41%, 4.14%, 0.58%, 7.07, 0.09 dS·cm-1, 28.06 mg·L-1, 0.50 mg·L-1 11.5 mg·L-1, 3.30 mg·L-1 and 2.7 mmol·kg-1, respectively. Their corresponding values for the same depth and land position at adjacent Char Rehania barren land were 16.69%, 1.25g·cm-3, 0.43%, 0.74%, 0.25%, 6.57, 0.13 dS·cm-1, 13.07mg·L-1, 0.30 mg·L-1, 1.4 mg·L-1, 0.30 mmol·kg-1 and 0.50 mg·L-1, respectively. Soil moisture, particle density, organic matter and C, total N, pH, available P, K and Ca decreased, and soil salinity, available Na and Mg increased from inland towards sea side in the plantations. Although soil texture did not differ in most soil depths between plantation and adjacent barren land, proportion of sand particle was significantly (p≤0.01) lower and silt particle significantly (p≤0.001) in the plantations higher than that in their adjacent barren lands. In the study, evaluation of all the parameters was also done for the other pair of lands.展开更多
The liming potential of some crop residues and their biochars on an acid Ultisol was investigated using incubation experiments. Rice hulls showed greater liming potential than rice hull biochar, while soybean and pea ...The liming potential of some crop residues and their biochars on an acid Ultisol was investigated using incubation experiments. Rice hulls showed greater liming potential than rice hull biochar, while soybean and pea straws had less liming potential than their biochars. Due to their higher alkalinity, biochars from legume materials increased soil pH much compared to biochars from non-legume materials. The alkalinity of biochars was a key factor affecting their liming potential, and the greater alkalinity of biochars led to greater reductions in soil acidity. The incorporation of biochars decreased soil exchangeable acidity and increased soil exchangeable base cations and base saturation, thus improving soil fertility.展开更多
Aims The effects of biocrusts on vascular plants are rarely evaluated in coastal saline lands.Our aim was to examine whether and how a mosaic of biocrusts affect seed germination of two typical herbaceous plants in a ...Aims The effects of biocrusts on vascular plants are rarely evaluated in coastal saline lands.Our aim was to examine whether and how a mosaic of biocrusts affect seed germination of two typical herbaceous plants in a coastal saline land of the Yellow River Delta,to enhance our understanding by which substrate heterogeneity influences plant community dynamics.Methods We conducted growth chamber experiments to investigate the effects of biocrusts and uncrusted soil from bare patch-,Phragmites australis-,Suaeda glauca-and Tamarix chinensis-dominated habitats on seed germination percentage and mean germination time of two herbaceous plants:the perennial P.australis and the annual S.glauca.We also explored the mechanisms underlying the effects of substrate on seed germination.Important Findings Compared with uncrusted soil,biocrusts increased water content,nutrient accumulation and concentration of most salt ions,but they reduced soil pH value.Biocrusts with mosses directly decreased soil pH value and concentration of Mg2+,resulting in an indirect increase in seed germination percentage of S.glaucas.The low soil pH value also resulted in an indirect decrease in seed germination speed of P.australis in their own habitats.Bare patch directly increased accumulation of Cl?,resulting in an indirect decrease in seed germination speed of P.australis.These results suggest that biocrusts with mosses in P.australis habitats offer a window of opportunity for germination of S.glaucas.Biocrusts combined with habitat type have the potential to influence plant community structure through an effect on seed germination and establishment.展开更多
基金Supported by National Natural Science Foundation of China (40973078)Tianjin Normal University Project (5RL083)~~
文摘[Objective] The aim was to study on effects of inorganic sodium salt in soil on concentration of zinc ion in different patterns. [Method] Tessier sequential extraction was used to study on effects of inorganic sodium salts (in different species and different concentrations) on concentration of zinc ion in different patterns. [Result] Different inorganic sodium salts had different effects on zinc form. Content of ex- changeable Zn would reduce if Na2CO3 or Na2SO4 was added and the content would increase if NaCI was added. Content of carbonate zinc, which was significantly influ- enced by Na2SO4, would increase if NaCI or Na2SO4 was added, and would decrease if Na2CO3 was added. For Zn bound to Fe-Mn oxides and organic matters, and residual Zn, the contents would decrease if NaCI or Na2SO4 was added and the decrease showed much more significantly if high concentration sodium salts were added. In addition, content of Zn bound to Fe-Mn oxides decreased if Na2CO3 was added. If low concentration Na2CO3 was added, Zn bound to organic matters and residual would increase in content but would lower if high concentration one was added. [Conclusion] The research provided references for measurement of heavy metal ion content in soil in different places.
文摘SO 4 2- and Zn 2+ or Cd 2+ were added to three variable charge soils in different sequences. In one sequence sulfate was added first, and in the other, Zn 2+ or Cd 2+ first. The addition of sulfate to the system invariably caused an increase in adsorption of the heavy metal added, with the effect more remarkable when the soil reacted with the sulfate prior to the metal. The shift in pH 50 for both Zn and Cd adsorption was also comparatively larger in the first sequence of reactions. It was suggested that the increase in negative charge density and the resultant negative potential of the soil were the primary cause of the pronounced effect of sulfate on adsorption of Zn or Cd, and the formation of the ternary surface complex S SO 4 M might also play a role in the effect.
基金Project supported by the National Natural Science Foundation of China (Nos. 49971046 and 49831005).
文摘A self-made constant pH automated titration instrument was used to study thekinetics of hydroxyl release during selenite reacting with variable charge soils. The rate ofhydroxyl release was very rapid at the first several minutes, then gradually slowed down, and atlast did not change any more. The experimental data was well fitted by the Langmuir kineticequation, arid with increasing selenite concentration or decreasing solution pH, the reaction lastedlonger, the maximum of hydroxyl release (x_m) increased, and the binding constant (k) decreased.The time of hydroxyl release with Xuwen latosol was much longer than that with Jinxian red soil.
文摘The effects of sorbed phosphate on the kinetics of Cu ̄2+ secondary adsorption on three major types ofsoils in southern and Central China were studied using the batch method and flow (or miscible displacement)techniques. Both of the methods showed that diffusions were the ratedetermining steps in the Cu ̄2+ adsorp-tion by the soils. By the flow method, the course of Cu ̄2+ adsorption kinetics consisted of two steps-sn initialrapid process and a later slow process of Cu ̄2+ adsorption; while by the batch method, the 90% of Cu ̄2+adsorption reaction was found to finish within first 1 minute. The results obtained using the flow method alsoindicated that for red soil and yellow-brown soil, Cu ̄2+ adsorptions during the initial reaction periods wererestrained when the soils sorbed phosphate, whereas the adsorption reactions were stimulated at the finaltime. For grey Chao soil, sorbed phosphate retarded the Cu ̄2+ adsorption in the whole reaction period. Theresults obtained using the batch method and flow techniques all implied that the different effects of sorbedphosphate would be attributed to its effects on Cu ̄2+ ion diffusion in soil solution.
文摘An exploratory study was conducted in the coastal plantation (12-and 17-year-old Sonneratia apetala) of Char Alim and Char Piya and on their adjacent barren lands at Char Rehania and Char Nurul Islam in Hatiya of Noakhali district, in Bangladesh to determine afforestation effects on soil properties. At soil depths of 0-10, 10-30 and 30-40 cm across three different land strips viz. inland, middle and sea side in 12-and 17-year-old keora (Sonneratia apetala) plantations, soil moisture, particle density, organic matter and C, total N, pH, available P, K, Na, Ca and Mg were significantly (p≤0.05, p≤0.01, p≤0.001) higher, and soil salinity significantly (p≤0.001) lower than that in their adjacent barren lands. Soil moisture, particle density, organic matter and C, total N, pH, soil salinity, available P, K, Na, Ca and Mg of surface soil in Char Alim plantation at inland were 31.09%, 2.24 g·cm-3, 2.41%, 4.14%, 0.58%, 7.07, 0.09 dS·cm-1, 28.06 mg·L-1, 0.50 mg·L-1 11.5 mg·L-1, 3.30 mg·L-1 and 2.7 mmol·kg-1, respectively. Their corresponding values for the same depth and land position at adjacent Char Rehania barren land were 16.69%, 1.25g·cm-3, 0.43%, 0.74%, 0.25%, 6.57, 0.13 dS·cm-1, 13.07mg·L-1, 0.30 mg·L-1, 1.4 mg·L-1, 0.30 mmol·kg-1 and 0.50 mg·L-1, respectively. Soil moisture, particle density, organic matter and C, total N, pH, available P, K and Ca decreased, and soil salinity, available Na and Mg increased from inland towards sea side in the plantations. Although soil texture did not differ in most soil depths between plantation and adjacent barren land, proportion of sand particle was significantly (p≤0.01) lower and silt particle significantly (p≤0.001) in the plantations higher than that in their adjacent barren lands. In the study, evaluation of all the parameters was also done for the other pair of lands.
基金Supported by the National Key Technology R&D Program of China (No.2009BADC6B02)the National Natural Science Foundation of China (No.40971135)
文摘The liming potential of some crop residues and their biochars on an acid Ultisol was investigated using incubation experiments. Rice hulls showed greater liming potential than rice hull biochar, while soybean and pea straws had less liming potential than their biochars. Due to their higher alkalinity, biochars from legume materials increased soil pH much compared to biochars from non-legume materials. The alkalinity of biochars was a key factor affecting their liming potential, and the greater alkalinity of biochars led to greater reductions in soil acidity. The incorporation of biochars decreased soil exchangeable acidity and increased soil exchangeable base cations and base saturation, thus improving soil fertility.
基金This research was supported by the Joint Funds of the National Natural Science Foundation of China(U2006215)the Natural Science Foundation of Shandong Province(ZR2019PDO08,ZR2020MDOO7)+1 种基金the National Nature Science Foundation of China(41971126)Taishan Scholars Program of Shandong Province,China(TSQN201909152).
文摘Aims The effects of biocrusts on vascular plants are rarely evaluated in coastal saline lands.Our aim was to examine whether and how a mosaic of biocrusts affect seed germination of two typical herbaceous plants in a coastal saline land of the Yellow River Delta,to enhance our understanding by which substrate heterogeneity influences plant community dynamics.Methods We conducted growth chamber experiments to investigate the effects of biocrusts and uncrusted soil from bare patch-,Phragmites australis-,Suaeda glauca-and Tamarix chinensis-dominated habitats on seed germination percentage and mean germination time of two herbaceous plants:the perennial P.australis and the annual S.glauca.We also explored the mechanisms underlying the effects of substrate on seed germination.Important Findings Compared with uncrusted soil,biocrusts increased water content,nutrient accumulation and concentration of most salt ions,but they reduced soil pH value.Biocrusts with mosses directly decreased soil pH value and concentration of Mg2+,resulting in an indirect increase in seed germination percentage of S.glaucas.The low soil pH value also resulted in an indirect decrease in seed germination speed of P.australis in their own habitats.Bare patch directly increased accumulation of Cl?,resulting in an indirect decrease in seed germination speed of P.australis.These results suggest that biocrusts with mosses in P.australis habitats offer a window of opportunity for germination of S.glaucas.Biocrusts combined with habitat type have the potential to influence plant community structure through an effect on seed germination and establishment.