Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field exper...Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field experiments were conducted for two growing seasons at eight sites, in Huimin County, Shandong Province, from 2001 to 2003. The optimum N rate for maximum grain yield was inversely related to the initial soil mineral N content (Nmin) in the top 90 cm of the soil profile before sowing. There was no yield response to the applied N at the three sites with high initial soil mineral N levels (average 212 kg N ha-1). The average optimum N rate was 96 kg N ha-1 for the five sites with low initial soil Nmin (average 155 kg N ha-1) before sowing. Residual nitrate N in the top 90 cm of the soil profile after harvest increased with increasing fertilizer N application rate. The apparent N losses during the wheat-growing season also increased with increasing N application rate. The average apparent N losses with the optimum N rates were less than 15 kg N ha-1, whereas the farmers' conventional N application rate resulted in losses of more than 100 kg N ha-1. Therefore, optimizing N use for winter wheat considerably reduced N losses to the environment without compromising crop yields.展开更多
Corn field experiments with two treatments, NP and NPK, where N in the form of urea, P in the form of calcium phosphate, and K in the form of KCl were applied at rates of 187.5, 33.3, and 125 kg ha^-1, respectively, o...Corn field experiments with two treatments, NP and NPK, where N in the form of urea, P in the form of calcium phosphate, and K in the form of KCl were applied at rates of 187.5, 33.3, and 125 kg ha^-1, respectively, on soils derived from Quaternary red clay were conducted in the hilly red soil region of Zhejiang Province, China. Plant grains and stalks were collected for determination of K content. Seven equations were used to describe the kinetics of K release from surface soil samples taken before the corn experiments under electric field strengths of 44.4 and 88.8 V cm^-1 by means of electro-ultrafiltration (EUF) and to determine if their parameters had a practical application. The second-order and Elovich equations excellently described K release; the first-order, power function, and parabolic diffusion equations also described K release well; but the zero-order and exponential equations were not so good at reflecting K release. Five reference standards from the field experiments, including relative grain yield (yield of the NP treatment/yield of the NPK treatment), relative dry matter yield (dry matter of the NP treatment/dry matter of the NPK treatment), quantity of K uptake in the NP treatment (no K application), soil exchangeable K, and soil HNO3-soluble K, were used to test the effectiveness of equation parameters obtained from the slope or intercept of these equations. Correlations of the ymax (the maximum desorbable quantity of K) in the second-order equation and the constant b in the first-order and Elovich equations to all five reference standards were highly significant (P ≤ 0.01). The constant a in the power function equation was highly significant (P 〈 0.01) for four of the five reference standards with the fifth being significant (P ≤ 0.05). The constant b in the parabolic equation was also significantly correlated (P ≤ 0.05) to the relative grain yield and soil HNO3-soluble K. These suggested that all of these parameters could be used to estimate the soil K supplying capacity and the crop response to K fertilizer.展开更多
A long term fertilization experiment was carried out in an experimental field in Lyczyn near Warsaw, Poland. Application ofmineral fertilizers, especially N fertilizers with and without farmyard manure accelerated th...A long term fertilization experiment was carried out in an experimental field in Lyczyn near Warsaw, Poland. Application ofmineral fertilizers, especially N fertilizers with and without farmyard manure accelerated the acidification process of the soil. Application of 1.6 t CaO ha -1 every four years was essential to maintenance of the soil pH KCl at 5.5~6.6 and base saturation degree above 60%. Application of 50 t farmyard manure ha -1 every 4 years, which contained 46 kg P and 240 kg K, was sufficient to maintain both the K and P fertility of the soil. Besides, it was beneficial to alleviating soil acidification. As a result of long term unbalanced fertilization, yield responses to N, P and K fertilizers increased significantly with time. The efficiency of N from farmyard manure was found to be comparable to that of N fertilizer during 1988~1991.展开更多
Mineralizable N and organic N components in different layers (0~15, 15~30,30~45, 45~60, 60~80 and 80~100 cm) of six soils with different fertilities sampled from YongshouCounty, Shaanxi Province, China, were det...Mineralizable N and organic N components in different layers (0~15, 15~30,30~45, 45~60, 60~80 and 80~100 cm) of six soils with different fertilities sampled from YongshouCounty, Shaanxi Province, China, were determined by the aerobic incubation method and the Bremnerprocedure, respectively. Correlation, multiple regression and path analyses were performed to studythe relation of mineralizable N to organic N components. Results of correlation and regressionanalyses showed that the amounts of the N mineralized were parallel to, and significantly correlatedwith, the total acid hydrolyzable N, but was not so with the acid-insoluble N. Of the hydrolyzableN, the amino acid N and the ammonia N had a highly consistent significant correlation with themineralized N, and their partial regression coefficients were significant in the regressionequations, showing their importance in contribution to the mineralizable N. The amino sugar N, onthe other hand, had a relatively high correlation with the mineralized N, but their partialregression coefficients were not significant in the regression equations. In contrast, thehydrolyzable unknown N had no such relations. Path analysis further indicated that the amino acid Nand ammonia N made great direct contributions to the mineralized N, but the contributions of theamino sugar N were very low. These strongly suggested that the mineralized N in the soils tested wasmainly from the hydrolyzable N, particularly the amino acid N and ammonia N which are the majorsources for its production.展开更多
Nitrogen forms of humic substances from a subalpine meadow soil, a latentic red soil and a weathered coal and the effect of acid hydrolysis on N structures of soil humic substances were studied by using 15N cross-pola...Nitrogen forms of humic substances from a subalpine meadow soil, a latentic red soil and a weathered coal and the effect of acid hydrolysis on N structures of soil humic substances were studied by using 15N cross-polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy. Of the detectable 15N-signal intensity in the spectra of soil humic substances 71%-79% may be attributed to amide groups, 10%-18% to aromatic/aliphatic amines and 6%~11% to indole- and pyrrole-like N. Whereas in the spectrum of the fulvic acid from weathered coal 46%, at least, of the total 15N-signal intensity might be assigned to pyrrole-like N, 14% to aromatic/aliphatic ammes, and the remaining intensities could not be assigned with certainty. Data on nonhydrolyzable residue of protein-sugar mixture and a 15N-labelled soil fulvic acid confirm the formation of nonhydrolyzable heterocyclic N during acid hydrolysis. Project (No. 39790100) supported by the National Natural Science Foundation of China.展开更多
The binding of metallic contaminants (Pb, Cd, and Zn) and As on soil constituents was studied on four highly contaxninated alluvial soil profiles from the mining/smelting district of Pribram (Czech Republic) using...The binding of metallic contaminants (Pb, Cd, and Zn) and As on soil constituents was studied on four highly contaxninated alluvial soil profiles from the mining/smelting district of Pribram (Czech Republic) using a combination of mineralogical and chemical methods. Sequential extraction analysis (SEA) was supplemented by mineralogical investigation of both bulk samples and heavy mineral fractions using X-ray diffraction analysis (XRD) and scanning electron microscopy with an energy dispersive X-ray spectrometer (SEM/EDS). The mineralogy of Fe and Mn oxides was studied by voltammetry of microparticles (VMP) and diffuse reflectance spectrometry (DRS). Zinc and Pb were predominantly bound in the reducible fraction attributed to Fe oxides and Mn oxides (mainly birnessite, Na4Mn14O27.9H2O), which were detected in soils by XRD and SEM/EDS. In contrast, Cd was the most mobile contaminant and was predominantly present in the exchangeable fraction. Arsenic was bound to the residual and reducible fractions (corresponding to Fe oxides or to unidentified Fe-Pb arsenates). SEM/EDS observations indicate the predominant affinity of Pb for Mn oxides, and to a lesser extent, for Fe oxides. Thus, a more suitable SEA procedure should be used for these mining-affected soils to distinguish between the contaminant fraction bound to Mn oxides and Fe oxides.展开更多
The study results of the effects of temperature and ionic strength on the adsorption kineties of Pb ̄2+ and Cu ̄2+ bylatosol, red soil and kaolinte coated with Mn oxide showed that Pb ̄2+ and Cu ̄2+ adsorption by all ...The study results of the effects of temperature and ionic strength on the adsorption kineties of Pb ̄2+ and Cu ̄2+ bylatosol, red soil and kaolinte coated with Mn oxide showed that Pb ̄2+ and Cu ̄2+ adsorption by all samples, as awhole, increased with missing temperature. Temperature also increased both values of X_m (the amount of ionadsorbed at equilibrium) and k (kinetica constant) of Pb ̄2+ and Cu ̄2+. The activation energies of Pb ̄2+ adsorption werekaolin-Mn >red soil>goethite and those of Cu ̄2+ were latosol> red soil > kaolin-Mn >goethite. For a given singlesample the activation energy of Cu ̄2+ was greater than that of Pb ̄2+. Raising ionic strength decreased the adsorptionof Pb ̄2+ and Cu ̄2+ by latosol, red soil and kaolinite coated with Mn oxide but increased Pb ̄2+ and Cu ̄2+ adsorption bygoethite. The contrary results could be explained by the different changes in ion forms of Pb ̄2+ or Cu ̄2+ and in surfacecbarge characteristics of latosol, red soil, kaolin-Mn and goethite. Increasing supporting electrolyte concentration in-creased X_m and k in goethite systems but decreased X_m and k in kaolin-Mn systems. All the time-dependent data fit-ted the surface second-order equation very well.展开更多
The study area is located in Duhok and Sulaimania province in Kurdistan region, lraq. Study soils developed from parent material that has derived from limestone. Randomize, composed and disturbed surface soil samples ...The study area is located in Duhok and Sulaimania province in Kurdistan region, lraq. Study soils developed from parent material that has derived from limestone. Randomize, composed and disturbed surface soil samples were collected. The bulk soils were air dried, crushed and passed through 2 mm sieve. Standard methods were used for chemical, physical, geotechnical and mineralogical analyses of soil samples. The results indicated that the study soils texture were clay to loam clay, this texture was considered as suitable for ceramic and pottery industries as a result of increasing clay contents that ranged between 301 g/kg and 676 g/kg. Soil consistence depending on geotechnical properties increased the ability of study soils for resistance rapture and deformation. Existence the high amount of cementing agents in study soils such as organic matter, iron oxides and particularly total carbonate (247.2-308.8 g/kg) act to reduce the bad effect of the smectite minerals group (high shrinkage) in soils of study locations through increasing the resistance of these soils for rupture and deformation. The existing of Kaolinite, palygorskite and chlorite allows clay to be dried in ceramic and pottery industries without cracking from shrinkage. Study soils were different in their colors as a result of existence, different pigmentation materials that led to coloring soils with different colors in turn caused coloring of pottery and ceramic materials. Since, there are no available academic studies or researches about this subject in Kurdistan region in addition the clay pottery and ceramic sector still has a good market at the same time using this type of soils for arts, therefore, this study was conducted.展开更多
We explored the potential use of combining wavelength-dispersive X-ray spectroscopy(WDX) and micromorphology of thin sections to identify minerals in peat soils. Peat soil minerals from three peats and swamps across G...We explored the potential use of combining wavelength-dispersive X-ray spectroscopy(WDX) and micromorphology of thin sections to identify minerals in peat soils. Peat soil minerals from three peats and swamps across Golestan Province in northern Iran were first characterized by micromorphological studies. Soils were composed mainly of quartz, muscovite, biotite, pyroxene,sericitized Fe-nodules, and iron-rich garnet. In addition,micromorphological results indicated that Galougah Coastal Swamp sections contained some inorganic residue with biological origin including oyster and limpet, which may be related to the swamp's location near Gorgan Gulf.In order to determine mineralogical properties of samples,twelve unknown grains were chosen for elemental concentration map studies. Quartz, garnet, ilmenite, calcite,and pyroxene in Suteh samples; epidote and Fe-nodule in Ghaleh-Ghafeh Peat Swamp; and barite, phyllosilicates,and calcite in Galougah were identified by WDX mapping of Si, Al, Fe, Ca, Mg, C, Ba, S, and Ti. Composition of the oysters' body was also analyzed by WDX for Si, Ca, Fe,and C. The results indicated that most of the minerals in all sections likely formed through weathering, inheriting their composition from the parent rock. This research suggests that merging micromorphology and SEM/WDX image techniques can be useful in confirming the presence of mineral particles in soil science.展开更多
In order to study the effects of soil compaction, and soil physical and chemicalcharacteristics after land reclamation, selected lands that were reclaimed after 1, 2, 3, 4,and 5 a, respectively, in the Majiata Mine of...In order to study the effects of soil compaction, and soil physical and chemicalcharacteristics after land reclamation, selected lands that were reclaimed after 1, 2, 3, 4,and 5 a, respectively, in the Majiata Mine of the Shendong Open Pit; tested the effects ofsoil compaction; and collected soil samples from 5 different depths, which are 0-7.62,7.62-15.24, 15.24-22.86, 22.86-30.48, and 30.48-38.10 cm, respectively. The resultsshow that: Land reclamation leads to soil compaction. The lowest effect of soil compaction is in the top layer and the highest one at the depth of 20-30 cm; The bulk density of reclaimed soil is higher than that of undisturbed soil; this declines with the reclamation and nearly reaches the level of undisturbed soil after 5-year reclamation;The content of reclaimed soil nutrients is lower than that of undisturbed soil. The lowest one is inthe soil dumping site, which reaches the level of undisturbed soil after 5-year reclamation;The pH value of reclaimed soil is lower than that of undisturbed soil. The highest one isin the soil dumping site; this declines with the reclamation.展开更多
Chemical characteristics of humic substances in soils with different mineralogical characteristics and under different utilization patterns in Zhangpu, Fujian Province,together with two pairs of cultiwted soils in Nor...Chemical characteristics of humic substances in soils with different mineralogical characteristics and under different utilization patterns in Zhangpu, Fujian Province,together with two pairs of cultiwted soils in North China Plain were studied by chemical analysis,visible and IR spectroscopy and 13C NMR spectrometry.For soils in Zhangpu the HA/FA ratio and both the aromaticity and the degree of hundfication of HA were higher in soils with montmorillonite as the predominant clay mineral than in thO6e with kaolinite as the predominant clay mineral, provided these soils were under the same utilisstion pattern. While for eaCh pair of soils with similar mineralogical characteristics the HA/FA ratio was higher and the C/H ratio and the content of carboxyl group of HA were lower in paddy soil than in upland soil.Among the upland soils(or paddy soils) studied the HA/FA ratio of soil in Zhangpu with kaollnite as the predominant clay mineral was the lowest,and that of soil in Zhangpu with montmorillonite aa the predominant clay mineral was the highest.It was concluded that the presence of moatmorillonite favored the formation and maturation of humic acid.展开更多
The Port Harcourt Enugu expressway is part of a national road grid that links parts of southern and northern Nigeria. The severe pavement failure between Umuahia and Okigwe section of the expressway covering a distanc...The Port Harcourt Enugu expressway is part of a national road grid that links parts of southern and northern Nigeria. The severe pavement failure between Umuahia and Okigwe section of the expressway covering a distance of about 30 km was investigated by geotechnical and mineralogical assessment of disturbed and undisturbed samples of the underlying soils. Also vertical electrical sounding was performed at the failed sections. Results indicate that the section is underlain by shales of the Imo Formation, and soils are composed of 27% and 74% sand and fines respectively. The Atterberg limit values are moderate to high, with liquid limit in the range of 49-54%, plasticity index 11.1-24.4% and linear shrinkage 17.86-23.57% respectively. Abrasion test results of 0.58 to 16% indicate shales of low durability. The 24 hour free swell tests results range from 33-70% implying soils of moderate to high hydro-affinity and volume change. These data corroborate the X-ray diffraction analyses results which show montmorillonite and kaolinite as the main clay minerals present in the soils. Undrained cohesion range from 9 to 54 kPa and frictional angle from 13° to 29°. High settlement amounts and field observation of intense failure correlated well with the engineering properties and the clay minerals. The soils indicate mainly MI-MH and A-7-5 soils on the USC and AASHTO classification system respectively, implying poor quality soils as subgrade materials. stabilisation. Result of the study will be useful in remedial works areas underlain by the shales. The engineering properties may be modified and upgraded by on the failed sections of the road and future pavement design in展开更多
The residual effect of organic and mineral fertilizers on selected chemical properties of an Alfisol in the long term soil fertility trial established in 1950 at Samaru, Nigerian savanna was assessed. The trial was le...The residual effect of organic and mineral fertilizers on selected chemical properties of an Alfisol in the long term soil fertility trial established in 1950 at Samaru, Nigerian savanna was assessed. The trial was left fallow for fourteen years due to lack of funds. Topsoil was collected from plots that received three levels of cow dung (D), nitrogen (N) and phosphorus (P) in all possible combinations. The soils were analyzed for selected chemical properties. Except for significant effect of applied P on available P, sole application of cow dung, N or P had no significant effect on all the measured soil properties. The interaction of D and P significantly affected the mean values of exchangeable Ca, Mg, K and ECEC in the range of 1.12-1.96, 0.62-1.11, 0.37-0.64 and 2.82-4.11 cmol/kg respectively. The most important results were the ability of the plot that received neither D nor P to significantly increase these parameters than the plots that received only one of the treatments. The results show that the fallow period has changed the effects of application of organic and mineral fertilizers on the soil chemical properties under continuous cultivation by modifying them towards those of a native savanna Alfisol.展开更多
The paleosol samples from the fifth layer of the loess profile at Renjiapo in the eastern suburb of Xi'an are observed and analyzed using electron microscope and energy spectrum. Minerals such as AgSO4 and molybde...The paleosol samples from the fifth layer of the loess profile at Renjiapo in the eastern suburb of Xi'an are observed and analyzed using electron microscope and energy spectrum. Minerals such as AgSO4 and molybdenum, which are rare to find and can indicate typical dry climate environment, are found in this layer of paleosol. Secondary mineral is usually granular form of ellipsoidal and crystallization, and has the characteristics of chemical precipitating crystallization of apertures and fracture. Molybdenum minerals have the characteristics of colloidal substances. There are two kinds of secondary minerals. One is silver sulfate mineral and the other is silver oxide mineral. The movement of secondary silver, molybdenum and cobalt minerals, new clay mineral, Fe2O3 and Al2O3 indicates that S5 has experienced strong chemical weathering and mineral dissolution during its development. Silver, molybdenum, and cobalt can be released from primary minerals. During that period, the precipitation was abundant in Xi'an where soil reached an acidity stage of chemical weathering. At the later development stage of paleosol in the lowest part of S5, warm and wet monsoon climate had changed to dry and non-monsoon climate. In the period of the formation of AgSO4, which is easier to dissolve than CaSO4, a dry and non-monsoon climate was present in the Guanzhong Plain. Strong evaporation resulted in the accumulation of SO42-in the soil water solution and the formation of AgSO4. At that time, summer monsoon of East Asia was weak and did not cross Qinling Mountains to reach Guanzhong Plain. And at that time, the precipitation in Xi'an was less than 300 mm, and it was drier then in Xi'an than at present in Lanzhou.展开更多
Plant invasions can affect soil properties in the invaded habitat by altering the biotic and abiotic nature of soils through positive or negative plant–soil feedback.Litter decomposition from many invasive species en...Plant invasions can affect soil properties in the invaded habitat by altering the biotic and abiotic nature of soils through positive or negative plant–soil feedback.Litter decomposition from many invasive species enhanced soil nutrients,thereby decreasing native plant diversity and leading to further plant invasions.Here,we examined the impact of litter decomposition from an invasive plant(Sphagneticola trilobata)in a range of soils at varying depths on growth and physiology of its native congener(Sphagneticola calendulacea).We added litter from S.trilobata to each soil type at different depths(0,2,4 and 6 cm).Plants of S.calendulacea were grown in each treatment,and morphological and physiological parameters were measured at the end of the growing period.All soils treated with litter displayed increases in soil nutrients at depths of 2 and 4 cm;while most growth traits,leaf chlorophyll and leaf nitrogen of S.calendulacea decreased at the same soil depths.Therefore,litter decomposition from invasive S.trilobata resulted in a positive plant–soil feedback for soil nutrients,and a negative plant–soil feedback for growth in native S.calendulacea.Our findings also suggest that the effects of litter decomposition from an invasive plant on soils and native species can vary significantly depending on the soil depth at which the litter is deposited.Future studies should focus on plant–soil feedback for more native and invasive species in invaded habitats,and the effects of invasive litter in more soil types and at greater soil depths.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 30390084 and 30270772)the Natural Science Foundation of Beijing (No. 6010001)
文摘Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field experiments were conducted for two growing seasons at eight sites, in Huimin County, Shandong Province, from 2001 to 2003. The optimum N rate for maximum grain yield was inversely related to the initial soil mineral N content (Nmin) in the top 90 cm of the soil profile before sowing. There was no yield response to the applied N at the three sites with high initial soil mineral N levels (average 212 kg N ha-1). The average optimum N rate was 96 kg N ha-1 for the five sites with low initial soil Nmin (average 155 kg N ha-1) before sowing. Residual nitrate N in the top 90 cm of the soil profile after harvest increased with increasing fertilizer N application rate. The apparent N losses during the wheat-growing season also increased with increasing N application rate. The average apparent N losses with the optimum N rates were less than 15 kg N ha-1, whereas the farmers' conventional N application rate resulted in losses of more than 100 kg N ha-1. Therefore, optimizing N use for winter wheat considerably reduced N losses to the environment without compromising crop yields.
基金Project supported by the National Key Basic Research Support Foundation of China (No. G1999011809) the Natural Science Foundation of Zhejiang Province, China (No. RC99035).
文摘Corn field experiments with two treatments, NP and NPK, where N in the form of urea, P in the form of calcium phosphate, and K in the form of KCl were applied at rates of 187.5, 33.3, and 125 kg ha^-1, respectively, on soils derived from Quaternary red clay were conducted in the hilly red soil region of Zhejiang Province, China. Plant grains and stalks were collected for determination of K content. Seven equations were used to describe the kinetics of K release from surface soil samples taken before the corn experiments under electric field strengths of 44.4 and 88.8 V cm^-1 by means of electro-ultrafiltration (EUF) and to determine if their parameters had a practical application. The second-order and Elovich equations excellently described K release; the first-order, power function, and parabolic diffusion equations also described K release well; but the zero-order and exponential equations were not so good at reflecting K release. Five reference standards from the field experiments, including relative grain yield (yield of the NP treatment/yield of the NPK treatment), relative dry matter yield (dry matter of the NP treatment/dry matter of the NPK treatment), quantity of K uptake in the NP treatment (no K application), soil exchangeable K, and soil HNO3-soluble K, were used to test the effectiveness of equation parameters obtained from the slope or intercept of these equations. Correlations of the ymax (the maximum desorbable quantity of K) in the second-order equation and the constant b in the first-order and Elovich equations to all five reference standards were highly significant (P ≤ 0.01). The constant a in the power function equation was highly significant (P 〈 0.01) for four of the five reference standards with the fifth being significant (P ≤ 0.05). The constant b in the parabolic equation was also significantly correlated (P ≤ 0.05) to the relative grain yield and soil HNO3-soluble K. These suggested that all of these parameters could be used to estimate the soil K supplying capacity and the crop response to K fertilizer.
文摘A long term fertilization experiment was carried out in an experimental field in Lyczyn near Warsaw, Poland. Application ofmineral fertilizers, especially N fertilizers with and without farmyard manure accelerated the acidification process of the soil. Application of 1.6 t CaO ha -1 every four years was essential to maintenance of the soil pH KCl at 5.5~6.6 and base saturation degree above 60%. Application of 50 t farmyard manure ha -1 every 4 years, which contained 46 kg P and 240 kg K, was sufficient to maintain both the K and P fertility of the soil. Besides, it was beneficial to alleviating soil acidification. As a result of long term unbalanced fertilization, yield responses to N, P and K fertilizers increased significantly with time. The efficiency of N from farmyard manure was found to be comparable to that of N fertilizer during 1988~1991.
基金Project supported by the National Key Basic Research Support Foundation(NKBRSF)(No.G1999011707)and the National Natural Science Foundation of China(NFSC)(Nos.49890330,30230230 and 30070429).
文摘Mineralizable N and organic N components in different layers (0~15, 15~30,30~45, 45~60, 60~80 and 80~100 cm) of six soils with different fertilities sampled from YongshouCounty, Shaanxi Province, China, were determined by the aerobic incubation method and the Bremnerprocedure, respectively. Correlation, multiple regression and path analyses were performed to studythe relation of mineralizable N to organic N components. Results of correlation and regressionanalyses showed that the amounts of the N mineralized were parallel to, and significantly correlatedwith, the total acid hydrolyzable N, but was not so with the acid-insoluble N. Of the hydrolyzableN, the amino acid N and the ammonia N had a highly consistent significant correlation with themineralized N, and their partial regression coefficients were significant in the regressionequations, showing their importance in contribution to the mineralizable N. The amino sugar N, onthe other hand, had a relatively high correlation with the mineralized N, but their partialregression coefficients were not significant in the regression equations. In contrast, thehydrolyzable unknown N had no such relations. Path analysis further indicated that the amino acid Nand ammonia N made great direct contributions to the mineralized N, but the contributions of theamino sugar N were very low. These strongly suggested that the mineralized N in the soils tested wasmainly from the hydrolyzable N, particularly the amino acid N and ammonia N which are the majorsources for its production.
基金supported by the National Natural science Foundation of China.(No.39790100)
文摘Nitrogen forms of humic substances from a subalpine meadow soil, a latentic red soil and a weathered coal and the effect of acid hydrolysis on N structures of soil humic substances were studied by using 15N cross-polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy. Of the detectable 15N-signal intensity in the spectra of soil humic substances 71%-79% may be attributed to amide groups, 10%-18% to aromatic/aliphatic amines and 6%~11% to indole- and pyrrole-like N. Whereas in the spectrum of the fulvic acid from weathered coal 46%, at least, of the total 15N-signal intensity might be assigned to pyrrole-like N, 14% to aromatic/aliphatic ammes, and the remaining intensities could not be assigned with certainty. Data on nonhydrolyzable residue of protein-sugar mixture and a 15N-labelled soil fulvic acid confirm the formation of nonhydrolyzable heterocyclic N during acid hydrolysis. Project (No. 39790100) supported by the National Natural Science Foundation of China.
基金the Higher Education Development Fund (FRV) of the Ministry of Education, Youth and Sportsof the Czech Republic (No.217/2005)the Czech Science Foundation (No.GAR 205/04/1292)the Ministry ofEducation, Youth and Sports of the Czech Republic (Nos.MSM 6046070901 and MSM 0021620855).
文摘The binding of metallic contaminants (Pb, Cd, and Zn) and As on soil constituents was studied on four highly contaxninated alluvial soil profiles from the mining/smelting district of Pribram (Czech Republic) using a combination of mineralogical and chemical methods. Sequential extraction analysis (SEA) was supplemented by mineralogical investigation of both bulk samples and heavy mineral fractions using X-ray diffraction analysis (XRD) and scanning electron microscopy with an energy dispersive X-ray spectrometer (SEM/EDS). The mineralogy of Fe and Mn oxides was studied by voltammetry of microparticles (VMP) and diffuse reflectance spectrometry (DRS). Zinc and Pb were predominantly bound in the reducible fraction attributed to Fe oxides and Mn oxides (mainly birnessite, Na4Mn14O27.9H2O), which were detected in soils by XRD and SEM/EDS. In contrast, Cd was the most mobile contaminant and was predominantly present in the exchangeable fraction. Arsenic was bound to the residual and reducible fractions (corresponding to Fe oxides or to unidentified Fe-Pb arsenates). SEM/EDS observations indicate the predominant affinity of Pb for Mn oxides, and to a lesser extent, for Fe oxides. Thus, a more suitable SEA procedure should be used for these mining-affected soils to distinguish between the contaminant fraction bound to Mn oxides and Fe oxides.
文摘The study results of the effects of temperature and ionic strength on the adsorption kineties of Pb ̄2+ and Cu ̄2+ bylatosol, red soil and kaolinte coated with Mn oxide showed that Pb ̄2+ and Cu ̄2+ adsorption by all samples, as awhole, increased with missing temperature. Temperature also increased both values of X_m (the amount of ionadsorbed at equilibrium) and k (kinetica constant) of Pb ̄2+ and Cu ̄2+. The activation energies of Pb ̄2+ adsorption werekaolin-Mn >red soil>goethite and those of Cu ̄2+ were latosol> red soil > kaolin-Mn >goethite. For a given singlesample the activation energy of Cu ̄2+ was greater than that of Pb ̄2+. Raising ionic strength decreased the adsorptionof Pb ̄2+ and Cu ̄2+ by latosol, red soil and kaolinite coated with Mn oxide but increased Pb ̄2+ and Cu ̄2+ adsorption bygoethite. The contrary results could be explained by the different changes in ion forms of Pb ̄2+ or Cu ̄2+ and in surfacecbarge characteristics of latosol, red soil, kaolin-Mn and goethite. Increasing supporting electrolyte concentration in-creased X_m and k in goethite systems but decreased X_m and k in kaolin-Mn systems. All the time-dependent data fit-ted the surface second-order equation very well.
文摘The study area is located in Duhok and Sulaimania province in Kurdistan region, lraq. Study soils developed from parent material that has derived from limestone. Randomize, composed and disturbed surface soil samples were collected. The bulk soils were air dried, crushed and passed through 2 mm sieve. Standard methods were used for chemical, physical, geotechnical and mineralogical analyses of soil samples. The results indicated that the study soils texture were clay to loam clay, this texture was considered as suitable for ceramic and pottery industries as a result of increasing clay contents that ranged between 301 g/kg and 676 g/kg. Soil consistence depending on geotechnical properties increased the ability of study soils for resistance rapture and deformation. Existence the high amount of cementing agents in study soils such as organic matter, iron oxides and particularly total carbonate (247.2-308.8 g/kg) act to reduce the bad effect of the smectite minerals group (high shrinkage) in soils of study locations through increasing the resistance of these soils for rupture and deformation. The existing of Kaolinite, palygorskite and chlorite allows clay to be dried in ceramic and pottery industries without cracking from shrinkage. Study soils were different in their colors as a result of existence, different pigmentation materials that led to coloring soils with different colors in turn caused coloring of pottery and ceramic materials. Since, there are no available academic studies or researches about this subject in Kurdistan region in addition the clay pottery and ceramic sector still has a good market at the same time using this type of soils for arts, therefore, this study was conducted.
文摘We explored the potential use of combining wavelength-dispersive X-ray spectroscopy(WDX) and micromorphology of thin sections to identify minerals in peat soils. Peat soil minerals from three peats and swamps across Golestan Province in northern Iran were first characterized by micromorphological studies. Soils were composed mainly of quartz, muscovite, biotite, pyroxene,sericitized Fe-nodules, and iron-rich garnet. In addition,micromorphological results indicated that Galougah Coastal Swamp sections contained some inorganic residue with biological origin including oyster and limpet, which may be related to the swamp's location near Gorgan Gulf.In order to determine mineralogical properties of samples,twelve unknown grains were chosen for elemental concentration map studies. Quartz, garnet, ilmenite, calcite,and pyroxene in Suteh samples; epidote and Fe-nodule in Ghaleh-Ghafeh Peat Swamp; and barite, phyllosilicates,and calcite in Galougah were identified by WDX mapping of Si, Al, Fe, Ca, Mg, C, Ba, S, and Ti. Composition of the oysters' body was also analyzed by WDX for Si, Ca, Fe,and C. The results indicated that most of the minerals in all sections likely formed through weathering, inheriting their composition from the parent rock. This research suggests that merging micromorphology and SEM/WDX image techniques can be useful in confirming the presence of mineral particles in soil science.
基金Supported by the China Postdoctoral Science Foundation of China (20060400532, 2006DS08018)
文摘In order to study the effects of soil compaction, and soil physical and chemicalcharacteristics after land reclamation, selected lands that were reclaimed after 1, 2, 3, 4,and 5 a, respectively, in the Majiata Mine of the Shendong Open Pit; tested the effects ofsoil compaction; and collected soil samples from 5 different depths, which are 0-7.62,7.62-15.24, 15.24-22.86, 22.86-30.48, and 30.48-38.10 cm, respectively. The resultsshow that: Land reclamation leads to soil compaction. The lowest effect of soil compaction is in the top layer and the highest one at the depth of 20-30 cm; The bulk density of reclaimed soil is higher than that of undisturbed soil; this declines with the reclamation and nearly reaches the level of undisturbed soil after 5-year reclamation;The content of reclaimed soil nutrients is lower than that of undisturbed soil. The lowest one is inthe soil dumping site, which reaches the level of undisturbed soil after 5-year reclamation;The pH value of reclaimed soil is lower than that of undisturbed soil. The highest one isin the soil dumping site; this declines with the reclamation.
文摘Chemical characteristics of humic substances in soils with different mineralogical characteristics and under different utilization patterns in Zhangpu, Fujian Province,together with two pairs of cultiwted soils in North China Plain were studied by chemical analysis,visible and IR spectroscopy and 13C NMR spectrometry.For soils in Zhangpu the HA/FA ratio and both the aromaticity and the degree of hundfication of HA were higher in soils with montmorillonite as the predominant clay mineral than in thO6e with kaolinite as the predominant clay mineral, provided these soils were under the same utilisstion pattern. While for eaCh pair of soils with similar mineralogical characteristics the HA/FA ratio was higher and the C/H ratio and the content of carboxyl group of HA were lower in paddy soil than in upland soil.Among the upland soils(or paddy soils) studied the HA/FA ratio of soil in Zhangpu with kaollnite as the predominant clay mineral was the lowest,and that of soil in Zhangpu with montmorillonite aa the predominant clay mineral was the highest.It was concluded that the presence of moatmorillonite favored the formation and maturation of humic acid.
文摘The Port Harcourt Enugu expressway is part of a national road grid that links parts of southern and northern Nigeria. The severe pavement failure between Umuahia and Okigwe section of the expressway covering a distance of about 30 km was investigated by geotechnical and mineralogical assessment of disturbed and undisturbed samples of the underlying soils. Also vertical electrical sounding was performed at the failed sections. Results indicate that the section is underlain by shales of the Imo Formation, and soils are composed of 27% and 74% sand and fines respectively. The Atterberg limit values are moderate to high, with liquid limit in the range of 49-54%, plasticity index 11.1-24.4% and linear shrinkage 17.86-23.57% respectively. Abrasion test results of 0.58 to 16% indicate shales of low durability. The 24 hour free swell tests results range from 33-70% implying soils of moderate to high hydro-affinity and volume change. These data corroborate the X-ray diffraction analyses results which show montmorillonite and kaolinite as the main clay minerals present in the soils. Undrained cohesion range from 9 to 54 kPa and frictional angle from 13° to 29°. High settlement amounts and field observation of intense failure correlated well with the engineering properties and the clay minerals. The soils indicate mainly MI-MH and A-7-5 soils on the USC and AASHTO classification system respectively, implying poor quality soils as subgrade materials. stabilisation. Result of the study will be useful in remedial works areas underlain by the shales. The engineering properties may be modified and upgraded by on the failed sections of the road and future pavement design in
文摘The residual effect of organic and mineral fertilizers on selected chemical properties of an Alfisol in the long term soil fertility trial established in 1950 at Samaru, Nigerian savanna was assessed. The trial was left fallow for fourteen years due to lack of funds. Topsoil was collected from plots that received three levels of cow dung (D), nitrogen (N) and phosphorus (P) in all possible combinations. The soils were analyzed for selected chemical properties. Except for significant effect of applied P on available P, sole application of cow dung, N or P had no significant effect on all the measured soil properties. The interaction of D and P significantly affected the mean values of exchangeable Ca, Mg, K and ECEC in the range of 1.12-1.96, 0.62-1.11, 0.37-0.64 and 2.82-4.11 cmol/kg respectively. The most important results were the ability of the plot that received neither D nor P to significantly increase these parameters than the plots that received only one of the treatments. The results show that the fallow period has changed the effects of application of organic and mineral fertilizers on the soil chemical properties under continuous cultivation by modifying them towards those of a native savanna Alfisol.
基金supported by National Natural Science Foundation of China(Grant No. 40672108)State Key Laboratory of Chinese Academy of Sciences (Grant No. SKLLQG0916)
文摘The paleosol samples from the fifth layer of the loess profile at Renjiapo in the eastern suburb of Xi'an are observed and analyzed using electron microscope and energy spectrum. Minerals such as AgSO4 and molybdenum, which are rare to find and can indicate typical dry climate environment, are found in this layer of paleosol. Secondary mineral is usually granular form of ellipsoidal and crystallization, and has the characteristics of chemical precipitating crystallization of apertures and fracture. Molybdenum minerals have the characteristics of colloidal substances. There are two kinds of secondary minerals. One is silver sulfate mineral and the other is silver oxide mineral. The movement of secondary silver, molybdenum and cobalt minerals, new clay mineral, Fe2O3 and Al2O3 indicates that S5 has experienced strong chemical weathering and mineral dissolution during its development. Silver, molybdenum, and cobalt can be released from primary minerals. During that period, the precipitation was abundant in Xi'an where soil reached an acidity stage of chemical weathering. At the later development stage of paleosol in the lowest part of S5, warm and wet monsoon climate had changed to dry and non-monsoon climate. In the period of the formation of AgSO4, which is easier to dissolve than CaSO4, a dry and non-monsoon climate was present in the Guanzhong Plain. Strong evaporation resulted in the accumulation of SO42-in the soil water solution and the formation of AgSO4. At that time, summer monsoon of East Asia was weak and did not cross Qinling Mountains to reach Guanzhong Plain. And at that time, the precipitation in Xi'an was less than 300 mm, and it was drier then in Xi'an than at present in Lanzhou.
基金supported by the National Natural Science Foundation of China(31971427,32071521,31770446)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment.
文摘Plant invasions can affect soil properties in the invaded habitat by altering the biotic and abiotic nature of soils through positive or negative plant–soil feedback.Litter decomposition from many invasive species enhanced soil nutrients,thereby decreasing native plant diversity and leading to further plant invasions.Here,we examined the impact of litter decomposition from an invasive plant(Sphagneticola trilobata)in a range of soils at varying depths on growth and physiology of its native congener(Sphagneticola calendulacea).We added litter from S.trilobata to each soil type at different depths(0,2,4 and 6 cm).Plants of S.calendulacea were grown in each treatment,and morphological and physiological parameters were measured at the end of the growing period.All soils treated with litter displayed increases in soil nutrients at depths of 2 and 4 cm;while most growth traits,leaf chlorophyll and leaf nitrogen of S.calendulacea decreased at the same soil depths.Therefore,litter decomposition from invasive S.trilobata resulted in a positive plant–soil feedback for soil nutrients,and a negative plant–soil feedback for growth in native S.calendulacea.Our findings also suggest that the effects of litter decomposition from an invasive plant on soils and native species can vary significantly depending on the soil depth at which the litter is deposited.Future studies should focus on plant–soil feedback for more native and invasive species in invaded habitats,and the effects of invasive litter in more soil types and at greater soil depths.