This study focused on leaching behavior of alkaline anion and sodium in bauxite residue through ammonium chloride treatment.The results showed that the pH of bauxite residue decreased from 10.49 to 8.93,total alkaline...This study focused on leaching behavior of alkaline anion and sodium in bauxite residue through ammonium chloride treatment.The results showed that the pH of bauxite residue decreased from 10.49 to 8.93,total alkaline anion(HCO3^-,CO3^2-,OH^-,AlO2^-)concentration reduced from 38.89 to 25.50 mmol/L,leaching rate of soluble sodium was 80.86%with ammonium chloride addition of 0.75%,liquid/solid(L/S)ratio of 3(mL/g),temperature of 30°C and reaction time of 18 h;L/S ratio was the main factor affecting the removal of alkaline anion and the leaching of sodium.Furthermore,ammonium chloride promoted the dissolution of diaspore and changed the micro/morphological characteristics with the increase of massive structure.The findings of this work will contribute to achieve soil-formation of bauxite residue.展开更多
Furfural residue, an industrial waste, is a kind of strongly acidic organic materials. Its comprehensive utilization in agriculture showed a significant effect on control of soil alkalization, amelioration of solonetz...Furfural residue, an industrial waste, is a kind of strongly acidic organic materials. Its comprehensive utilization in agriculture showed a significant effect on control of soil alkalization, amelioration of solonetz and increase of crop yields. In detail it may adjust pH, depress alkalinity, reduce bulk density and compactness and increase water permeability and retention ability of the soil. Meanwhile agricultural use of furfural residue provided an effective way to avoid its pollution of the soil, Water and air.展开更多
Fractionation of metals in acid sandy loam soil amended withalkaline-stabilised sewage sludge biosolids was conducted in order toassess metal bioavailability and environmental mobility. Soilsolution was extracted by a...Fractionation of metals in acid sandy loam soil amended withalkaline-stabilised sewage sludge biosolids was conducted in order toassess metal bioavailability and environmental mobility. Soilsolution was extracted by a centrifugation and filtration technique.Meal speciation in the soil solution was determined by a cationexchange resin method. Acetic acid and EDTA extracting solutions wereused for extraction of metals in soil solid surfaces. Metaldistribution in different fractions of soil solid phase wasdetermined using a three-step sequential extraction scheme.展开更多
Bauxite residue is a highly alkaline waste product from refining bauxite ore.Bioremediation driven by microbial activities has been evidently effective in lowering the alkalinity of bauxite residues,which is critical ...Bauxite residue is a highly alkaline waste product from refining bauxite ore.Bioremediation driven by microbial activities has been evidently effective in lowering the alkalinity of bauxite residues,which is critical to the initiation of pedogenesis under engineered conditions.The present study investigated the changes of alkalinity and aggregation of bauxite residue at different depth in response to the colonization of Penicillium oxalicum in columns.The results demonstrated that the inoculation of P.oxalicum decreased the residue’s pH to about 7 after 30 d only at the surface layer,which was exposed to aerobic conditions.The formation of aggregates was improved overall in the organic matter treated bauxite residue.However,the EC of bauxite residue increased with time under the incubation condition,probably due to accelerated hydrolysis of sodium-rich minerals.The inoculation of P.oxalicum had no effects on urease activity,but increased cellulose enzyme activity at surface layer only.展开更多
Rapeseed cake (RC), the residue of rapeseed oil extraction, is effective for improving tea (Camellia sinensis) quality, especially taste and aroma, but it has limited ability to ameliorate strongly acidic soil. In...Rapeseed cake (RC), the residue of rapeseed oil extraction, is effective for improving tea (Camellia sinensis) quality, especially taste and aroma, but it has limited ability to ameliorate strongly acidic soil. In order to improve the liming potential of RC, alkaline slag (AS), the by-product of recovery of sodium carbonate, was incorporated. Combined effects of different levels of RC and AS on ameliorating acidic soil from a tea garden were investigated. Laboratory incubations showed that combined use of AS and RC was an effective method to reduce soil exchangeable acidity and A1 saturation and increase base saturation, but not necessarily for soil pH adjustment. The release of alkalinity from the combined amendments and the mineralization of organic nitrogen increased soil pH initially, but then soil pH decreased due to nitrifications. Various degrees of nitrification were correlated with the interaction of different Ca levels, pH and N contents. When RC was applied at low levels, high Ca levels from AS repressed soil nitrification, resulting in smaller pH fluctuations. In contrast, high AS stimulated soil nitrification, when RC was applied at high levels, and resulted in a large pH decrease. Based on the optimum pH for tea production and quality, high ratios of AS to RC were indicated for soil acidity amelioration, and 8.0 g kg-1 and less than 2.5 g kg-1 were indicated for AS and RC, respectively. Further, field studies are needed to investigate the variables of combined amendments.展开更多
Flooding an extremely alkaline(pH 10.6) saline soil of the former Lake Texcoco to reduce salinity will affect the soil carbon(C)and nitrogen(N) dynamics.A laboratory incubation experiment was done to investigate how d...Flooding an extremely alkaline(pH 10.6) saline soil of the former Lake Texcoco to reduce salinity will affect the soil carbon(C)and nitrogen(N) dynamics.A laboratory incubation experiment was done to investigate how decreasing soil salt content affected dynamics of C and N in an extremely alkaline saline soil.Sieved soil with electrical conductivity(EC) of 59.2 dS m^(-1) was packed in columns,and then flooded with tap water,drained freely and conditioned aerobically at 50%water holding capacity for a month.This process of flooding-drainage-conditioning was repeated eight times.The original soil and the soil that had undergone one,two,four and eight flooding-drainage-conditioning cycles were amended with 1000 mg glucose-^(14)C kg^(-1) soil and 200 mg NH_4^+-N kg^(-1)soil,and then incubated for 28 d.The CO_2 emissions,soil microbial biomass,and soil ammonium(NE_4^+),nitrite(NO_2^-) and nitrate(NO_3^-) were monitored in the aerobic incubation of 28 d.The soil EC decreased from 59.2 to 1.0 dS m^(_1) after eight floodings,and soil pH decreased from 10.6 to 9.6.Of the added ^(14)C-labelled glucose,only 8%was mineralized in the original soil,while 24%in the soil flooded eight times during the 28-d incubation.The priming effect was on average 278 mg C kg^(-1) soil after the 28-d incubation.Soil microbial biomass C(mean 66 mg C kg^(-1) soil) did not change with flooding times in the unamended soil,and increased 1.4 times in the glucose-NH_4^+-amended soil.Ammonium immobilization and NO_2^- concentration in the aerobically incubated soil decreased with increasing flooding times,while NO_3^- concentration increased.It was found that flooding the Texcoco soil decreased the EC sharply,increased mineralization of glucose,stimulated nitrification,and reduced immobilization of inorganic N,but did not affect soil microbial biomass C.展开更多
基金Projects(41877511,41842020) supported by the National Natural Science Foundation of ChinaProject(201509048) supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘This study focused on leaching behavior of alkaline anion and sodium in bauxite residue through ammonium chloride treatment.The results showed that the pH of bauxite residue decreased from 10.49 to 8.93,total alkaline anion(HCO3^-,CO3^2-,OH^-,AlO2^-)concentration reduced from 38.89 to 25.50 mmol/L,leaching rate of soluble sodium was 80.86%with ammonium chloride addition of 0.75%,liquid/solid(L/S)ratio of 3(mL/g),temperature of 30°C and reaction time of 18 h;L/S ratio was the main factor affecting the removal of alkaline anion and the leaching of sodium.Furthermore,ammonium chloride promoted the dissolution of diaspore and changed the micro/morphological characteristics with the increase of massive structure.The findings of this work will contribute to achieve soil-formation of bauxite residue.
文摘Furfural residue, an industrial waste, is a kind of strongly acidic organic materials. Its comprehensive utilization in agriculture showed a significant effect on control of soil alkalization, amelioration of solonetz and increase of crop yields. In detail it may adjust pH, depress alkalinity, reduce bulk density and compactness and increase water permeability and retention ability of the soil. Meanwhile agricultural use of furfural residue provided an effective way to avoid its pollution of the soil, Water and air.
基金National Natural Science Foundation of China(Nos.49831070 and 40125005)theNational Key Basic Research Support Foundation of China (No. G1999011807)the Jiangsu Provincial Foundation for Young Scientists (No. BQ98050).
文摘Fractionation of metals in acid sandy loam soil amended withalkaline-stabilised sewage sludge biosolids was conducted in order toassess metal bioavailability and environmental mobility. Soilsolution was extracted by a centrifugation and filtration technique.Meal speciation in the soil solution was determined by a cationexchange resin method. Acetic acid and EDTA extracting solutions wereused for extraction of metals in soil solid surfaces. Metaldistribution in different fractions of soil solid phase wasdetermined using a three-step sequential extraction scheme.
基金Projects(41877511,41842020)supported by the National Natural Science Foundation of ChinaProject(2018zzts421)supported by the Innovative Project of Independent Exploration of Central South University,China
文摘Bauxite residue is a highly alkaline waste product from refining bauxite ore.Bioremediation driven by microbial activities has been evidently effective in lowering the alkalinity of bauxite residues,which is critical to the initiation of pedogenesis under engineered conditions.The present study investigated the changes of alkalinity and aggregation of bauxite residue at different depth in response to the colonization of Penicillium oxalicum in columns.The results demonstrated that the inoculation of P.oxalicum decreased the residue’s pH to about 7 after 30 d only at the surface layer,which was exposed to aerobic conditions.The formation of aggregates was improved overall in the organic matter treated bauxite residue.However,the EC of bauxite residue increased with time under the incubation condition,probably due to accelerated hydrolysis of sodium-rich minerals.The inoculation of P.oxalicum had no effects on urease activity,but increased cellulose enzyme activity at surface layer only.
基金Supported by the National Key Technology R&D Program of China(No.2009BADC6B02)the National Environmental Protection Public Benefit Research Foundation of China(No.2013467036)the National Natural Science Foundation of China(Nos.41030531 and 40701078)
文摘Rapeseed cake (RC), the residue of rapeseed oil extraction, is effective for improving tea (Camellia sinensis) quality, especially taste and aroma, but it has limited ability to ameliorate strongly acidic soil. In order to improve the liming potential of RC, alkaline slag (AS), the by-product of recovery of sodium carbonate, was incorporated. Combined effects of different levels of RC and AS on ameliorating acidic soil from a tea garden were investigated. Laboratory incubations showed that combined use of AS and RC was an effective method to reduce soil exchangeable acidity and A1 saturation and increase base saturation, but not necessarily for soil pH adjustment. The release of alkalinity from the combined amendments and the mineralization of organic nitrogen increased soil pH initially, but then soil pH decreased due to nitrifications. Various degrees of nitrification were correlated with the interaction of different Ca levels, pH and N contents. When RC was applied at low levels, high Ca levels from AS repressed soil nitrification, resulting in smaller pH fluctuations. In contrast, high AS stimulated soil nitrification, when RC was applied at high levels, and resulted in a large pH decrease. Based on the optimum pH for tea production and quality, high ratios of AS to RC were indicated for soil acidity amelioration, and 8.0 g kg-1 and less than 2.5 g kg-1 were indicated for AS and RC, respectively. Further, field studies are needed to investigate the variables of combined amendments.
基金supported by the 'Consejo Nacional de Cienciay y Tecnologia'(CONACyT,Mexico)(research grants Nos.32479-T and 39801-Z)
文摘Flooding an extremely alkaline(pH 10.6) saline soil of the former Lake Texcoco to reduce salinity will affect the soil carbon(C)and nitrogen(N) dynamics.A laboratory incubation experiment was done to investigate how decreasing soil salt content affected dynamics of C and N in an extremely alkaline saline soil.Sieved soil with electrical conductivity(EC) of 59.2 dS m^(-1) was packed in columns,and then flooded with tap water,drained freely and conditioned aerobically at 50%water holding capacity for a month.This process of flooding-drainage-conditioning was repeated eight times.The original soil and the soil that had undergone one,two,four and eight flooding-drainage-conditioning cycles were amended with 1000 mg glucose-^(14)C kg^(-1) soil and 200 mg NH_4^+-N kg^(-1)soil,and then incubated for 28 d.The CO_2 emissions,soil microbial biomass,and soil ammonium(NE_4^+),nitrite(NO_2^-) and nitrate(NO_3^-) were monitored in the aerobic incubation of 28 d.The soil EC decreased from 59.2 to 1.0 dS m^(_1) after eight floodings,and soil pH decreased from 10.6 to 9.6.Of the added ^(14)C-labelled glucose,only 8%was mineralized in the original soil,while 24%in the soil flooded eight times during the 28-d incubation.The priming effect was on average 278 mg C kg^(-1) soil after the 28-d incubation.Soil microbial biomass C(mean 66 mg C kg^(-1) soil) did not change with flooding times in the unamended soil,and increased 1.4 times in the glucose-NH_4^+-amended soil.Ammonium immobilization and NO_2^- concentration in the aerobically incubated soil decreased with increasing flooding times,while NO_3^- concentration increased.It was found that flooding the Texcoco soil decreased the EC sharply,increased mineralization of glucose,stimulated nitrification,and reduced immobilization of inorganic N,but did not affect soil microbial biomass C.